Benchmark Functions for Bayesian Optimization

Jungtaek Kim

Pohang University of Science and Technology, Pohang 37673, Republic of Korea

jtkim@postech.ac.kr

July 30, 2020

Revised on November 7, 2020 Revised on February 10, 2021 Revised on January 12, 2022 Revised on February 6, 2023

Introduction

In these notes, we cover benchmark functions for Bayesian optimization. Since Bayesian optimization is used to solve a global optimization problem, the benchmark functions described in these notes can be utilized in diverse problems on mathematical optimization.

Benchmark Functions for Bayesian Optimization

All functions are implemented in https://github.com/jungtaekkim/bayeso-benchmarks. We refer to [Surjanovic and Bingham, 2013] for specific forms of many benchmark functions, which are described in https://www.sfu.ca/~ssurjano. The details of BayesO [Kim and Choi, 2017] and BayesO Benchmarks are introduced in http://bayeso.org.

We will introduce the following benchmark functions in this article.

1.	Ackley	5.	Bukin 6
2.	Beale	6.	Colville
3.	Bohachevsky	7.	Cosines
4.	Branin	8.	De Jong 5

- 9. Drop-Wave
- 10. Easom
- 11. Eggholder
- 12. Goldstein-Price
- 13. Gramacy & Lee (2012)
- 14. Griewank
- 15. Hartmann 3D
- 16. Hartmann 6D
- 17. Holder Table
- 18. Kim1
- 19. Kim2

- 20. Kim3
- 21. Levy
- 22. Michalewicz
- 23. Rastrigin
- 24. Rosenbrock
- 25. Shubert
- 26. Six-Hump Camel
- 27. Sphere
- 28. Three-Hump Camel
- 29. Zakharov

1 Ackley Function

Figure 1: Ackley function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-32.768, 32.768]^d$,

$$f(\mathbf{x}) = -20 \exp\left(-0.2\sqrt{\frac{1}{d}\sum_{i=1}^{d}x_i^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d}\cos(2\pi x_i)\right) + 20 + \exp(1).$$
(1)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

2 Beale Function

Figure 2: Beale function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-4.5, 4.5]^2$,

$$f(\mathbf{x}) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2.$$
(2)

A global optimum is 0, at $\mathbf{x}^{\star} = [3.0, 0.5]$.

3 Bohachevsky Function

Figure 3: Bohachevsky function.

Given a two-dimensional input, $\mathbf{x} := [x_1, x_2] \in [-100, 100]^2$,

$$f(\mathbf{x}) = x_1^2 + 2x_2^2 - 0.3\cos(3\pi x_1) - 0.4\cos(4\pi x_2) + 0.7.$$
 (3)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, 0]$.

4 Branin Function

Figure 4: Branin function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2]$ for $-5 \le x_1 \le 10, \ 0 \le x_2 \le 15$,

$$f(\mathbf{x}) = \left(x_2 - \frac{5.1}{4\pi^2}x_1^2 + \frac{5}{\pi}x_1 - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_1) + 10.$$
 (4)

Global optima are 0, at $\mathbf{x}^{\star} = [-\pi, 12.275], [\pi, 2.275], \text{ and } [9.42478, 2.475].$

5 Bukin 6 Function

Figure 5: Bukin 6 function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2]$ for $-15 \le x_1 \le -5, -3 \le x_2 \le 3$,

$$f(\mathbf{x}) = 100\sqrt{|x_2 - 0.01x_1^2|} + 0.01|x_1 + 10|.$$
(5)

A global optimum is 0, at $\mathbf{x}^{\star} = [-10, 1]$.

6 Colville Function

Given a four-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2, x_3, x_4] \in [-10, 10]^4$,

$$f(\mathbf{x}) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2 + (x_3 - 1)^2 + 90(x_3^2 - x_4)^2 + 10.1((x_2 - 1)^2 + (x_4 - 1)^2) + 19.8(x_2 - 1)(x_4 - 1).$$
(6)

A global optimum is 0, at $\mathbf{x}^{\star} = [1, 1, 1, 1].$

7 Cosines Function

Figure 6: Cosines function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-2\pi, 2\pi]^d$,

$$f(\mathbf{x}) = \sum_{i=1}^{d} \cos(x_i) \left(\frac{0.1}{2\pi} |x_i| - 1 \right).$$
(7)

A global optimum is -d, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

8 De Jong 5 Function

Figure 7: De Jong 5 function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-65.536, 65.536]^2$,

$$f(\mathbf{x}) = \left(0.002 + \sum_{i=1}^{25} \frac{1}{i + (x_1 - A_{1i})^6 + (x_2 - A_{2i})^6}\right)^{-1},$$
(8)

where

$$\boldsymbol{A} = \begin{pmatrix} \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ -\mathbf{b} & -0.5\mathbf{b} & 0\mathbf{b} & 0.5\mathbf{b} & \mathbf{b} \end{pmatrix} \in \mathbb{R}^{2 \times 25}, \tag{9}$$

 $\mathbf{a} = [-32, -16, 0, 16, 32], \text{ and } \mathbf{b} = [32, 32, 32, 32, 32].$

A global optimum is 0.998004, at $\mathbf{x}^{\star} = [-32.104282, -32.137058]$ or many other points.

9 Drop-Wave Function

Figure 8: Drop-Wave function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-5.12, 5.12]^2$,

$$f(\mathbf{x}) = -\frac{1 + \cos\left(12\sqrt{x_1^2 + x_2^2}\right)}{0.5\left(x_1^2 + x_2^2\right) + 2}.$$
(10)

A global optimum is -1, at $\mathbf{x}^* = [0, 0]$.

10 Easom Function

Figure 9: Easom function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-100, 100]^2$,

$$f(\mathbf{x}) = -\cos(x_1)\cos(x_2)\exp\left(-(x_1 - \pi)^2 - (x_2 - \pi)^2\right).$$
 (11)

A global optimum is -1, at $\mathbf{x}^{\star} = [\pi, \pi]$.

11 Eggholder Function

Figure 10: Eggholder function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-512, 512]^2,$

$$f(\mathbf{x}) = -(x_2 + 47) \sin\left(\sqrt{|x_2 + 0.5x_1 + 47|}\right) - x_1 \sin\left(\sqrt{|x_1 - (x_2 + 47)|}\right).$$
(12)

A global optimum is -959.6407, at $\mathbf{x}^{\star} = [512.0, 404.2319]$.

12**Goldstein-Price Function**

Figure 11: Goldstein-Price function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-2, 2]^2$,

$$f(\mathbf{x}) = \left[1 + A(B - 14x_2 + 6x_1x_2 + 3x_2^2)\right] \left[30 + C(D + 48x_2 - 36x_1x_2 + 27x_2^2)\right], \quad (13)$$

where

$$A = (x_1 + x_2 + 1)^2, (14)$$

$$B = 19 - 14x_1 + 3x_1^2, (15)$$

$$B = 19 - 14x_1 + 3x_1,$$

$$C = (2x_1 - 3x_2)^2,$$
(15)
(16)

$$D = 18 - 32x_1 + 12x_1^2. \tag{17}$$

A global optimum is 3, at $\mathbf{x}^{\star} = [0, -1]$.

13 Gramacy & Lee (2012) Function

Figure 12: Gramacy & Lee (2012) function.

Given a one-dimensional input, $x \in [0.5, 2.5]$,

$$f(x) = \frac{\sin(10\pi x)}{2x} + (x-1)^4.$$
 (18)

A global optimum is 0.54856405, at $x^* = -0.86901113$.

14 Griewank Function

Figure 13: Griewank function (d = 1).

Figure 14: Griewank function (d = 2).

Given a d-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-600, 600]^d$,

$$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1.$$
 (19)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

15 Hartmann 3D Function

Given a three-dimensional input, $\mathbf{x}\coloneqq [x_1,x_2,x_3]\in [0,1]^3,$

$$f(\mathbf{x}) = -\sum_{i=1}^{4} \alpha_i \exp\left(-\sum_{j=1}^{3} A_{ij} (x_j - P_{ij})^2\right),$$
(20)

where $\boldsymbol{\alpha} = [1.0, 1.2, 3.0, 3.2]^\top,$

$$\boldsymbol{A} = \begin{pmatrix} 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3.0 & 10 & 30 \\ 0.1 & 10 & 35 \end{pmatrix},$$
(21)
$$\boldsymbol{P} = 10^{-4} \begin{pmatrix} 3689 & 1170 & 2673 \\ 4699 & 4387 & 7470 \\ 1091 & 8732 & 5547 \\ 381 & 5743 & 8828 \end{pmatrix}.$$

A global optimum is -3.86278, at $\mathbf{x}^{\star} = [0.114614, 0.555649, 0.852547]$.

16 Hartmann 6D Function

Given a six-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_6] \in [0, 1]^6$,

$$f(\mathbf{x}) = -\sum_{i=1}^{4} \alpha_i \exp\left(-\sum_{j=1}^{6} A_{ij} (x_j - P_{ij})^2\right),$$
(23)

where $\boldsymbol{\alpha} = [1.0, 1.2, 3.0, 3.2]^\top,$

$$\boldsymbol{A} = \begin{pmatrix} 10 & 3 & 17 & 3.5 & 1.7 & 8 \\ 0.05 & 10 & 17 & 0.1 & 8 & 14 \\ 3 & 3.5 & 1.7 & 10 & 17 & 8 \\ 17 & 8 & 0.05 & 10 & 0.1 & 14 \end{pmatrix},$$
(24)
$$\boldsymbol{P} = 10^{-4} \begin{pmatrix} 1312 & 1696 & 5569 & 124 & 8283 & 5886 \\ 2329 & 4135 & 8307 & 3736 & 1004 & 9991 \\ 2348 & 1451 & 3522 & 2883 & 3047 & 6650 \\ 4047 & 8828 & 8732 & 5743 & 1091 & 381 \end{pmatrix}.$$
(25)

A global optimum is -3.32237, at $\mathbf{x}^{\star} = [0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573]$.

17 Holder Table Function

Figure 15: Holder Table function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-10, 10]^2$,

$$f(\mathbf{x}) = -\left|\sin(x_1)\cos(x_2)\exp\left(\left|1 - \frac{\sqrt{x_1^2 + x_2^2}}{\pi}\right|\right)\right|.$$
 (26)

Global optima are -19.2085, at $\mathbf{x}^{\star} = [8.05502, 9.66459]$, [8.05502, -9.66459], [-8.05502, 9.66459], and [-8.05502, -9.66459].

18 Kim1 Function

Figure 16: Kim1 function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-16, 16]^2$,

$$f(\mathbf{x}) = \sin(x_1) + \cos(x_2) + 0.016(x_1 - 5)^2 + 0.008(x_2 - 5)^2.$$
(27)

A global optimum is -1.97152323, at $\mathbf{x}^{\star} = [4.72130726, 3.17086303]$.

19 Kim2 Function

Figure 17: Kim2 function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-128, 128]^2$,

$$f(\mathbf{x}) = \sum_{i=0}^{4} \left(\sin\left(\frac{x_1}{2^i}\right) + \cos\left(\frac{x_2}{2^i}\right) \right) + 0.0032(x_1 - 20)^2 + 0.0016(x_2 - 20)^2.$$
(28)

A global optimum is -3.45438747, at $\mathbf{x}^{\star} = [-2.10134660, 34.14526252]$.

20 Kim3 Function

Figure 18: Kim3 function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-256, 256]^2$,

$$f(\mathbf{x}) = \sum_{i=0}^{4} \left(\sin\left(\frac{x_1}{2^i}\right) + \cos\left(\frac{x_2}{2^i}\right) \right) + 0.0016(x_1 - 40)^2 + 0.0008(x_2 - 40)^2 - 25600(\phi(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + \phi(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)),$$
(29)

where $\phi(\cdot; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is a probability density function of multivariate Gaussian distribution defined with a mean vector $\boldsymbol{\mu}$ and a covariance matrix $\boldsymbol{\Sigma}$, $\boldsymbol{\mu}_1 = [-120, -120]$, $\boldsymbol{\mu}_2 = [-120, 120]$, and

$$\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \begin{bmatrix} 1000 & 0\\ 0 & 1000 \end{bmatrix}.$$
(30)

A global optimum is -4.94396792, at $\mathbf{x}^{\star} = [48.12477173, 34.19859065]$.

21 Levy Function

Figure 19: Levy function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-10, 10]^d$,

$$f(\mathbf{x}) = \sin^2 \left(\frac{\pi(x_1+3)}{4}\right) + \sum_{i=1}^{d-1} \left(\frac{x_i-1}{4}\right)^2 \left(1+10\sin^2 \left(\frac{\pi(x_i+3)}{4}+1\right)\right) + \left(\frac{x_d-1}{4}\right)^2 \left(1+\sin^2 \left(\frac{\pi(x_d+3)}{2}\right)\right).$$
(31)

A global optimum is 0, at $\mathbf{x}^{\star} = [1, \dots, 1] \in \mathbb{R}^d$.

22 Michalewicz Function

Figure 20: Michalewicz function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [0, \pi]^2$,

$$f(\mathbf{x}) = -\sum_{i=1}^{2} \sin(x_i) \sin^{20} \left(\frac{ix_i^2}{\pi}\right).$$
 (32)

A global optimum is -1.801302197, at $\mathbf{x}^{\star} = [2.20279089, 1.57063923]$.

23 Rastrigin Function

Figure 21: Rastrigin function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-5.12, 5.12]^d$,

$$f(\mathbf{x}) = 10d + \sum_{i=1}^{d} \left(x_i^2 - 10\cos(2\pi x_i) \right).$$
(33)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

24 Rosenbrock Function

Figure 22: Rosenbrock function (d = 2).

Given a *d*-dimensional input, $\mathbf{x} := [x_1, \dots, x_d] \in [-2.048, 2.048]^d$,

$$f(\mathbf{x}) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right],$$
(34)

where $d \ge 2$. A global optimum is 0, at $\mathbf{x}^* = [1, \dots, 1] \in \mathbb{R}^d$.

25 Shubert Function

Figure 23: Shubert function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-10, 10]^2$,

$$f(\mathbf{x}) = \left(\sum_{i=1}^{5} i \cos((i+1)x_1 + i)\right) \left(\sum_{i=1}^{5} i \cos((i+1)x_2 + i)\right).$$
 (35)

A global optimum is -186.73090883, at $\mathbf{x}^{\star} = [-7.08350641, -7.70831374]$.

26 Six-Hump Camel Function

Figure 24: Six-Hump Camel function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2]$ for $-3 \le x_1 \le 3, -2 \le x_2 \le 2$,

$$f(\mathbf{x}) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + x_1x_2 + (-4 + 4x_2^2)x_2^2.$$
 (36)

Global optima are -1.0316, at $\mathbf{x}^{\star} = [0.0898, -0.7126]$ and [-0.0898, 0.7126].

27 Sphere Function

Figure 25: Sphere function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-5.12, 5.12]^d$,

$$f(\mathbf{x}) = \sum_{i=1}^{d} x_i^2.$$
 (37)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

28 Three-Hump Camel Function

Figure 26: Three-Hump Camel function.

Given a two-dimensional input, $\mathbf{x} \coloneqq [x_1, x_2] \in [-5, 5]^2$,

$$f(\mathbf{x}) = 2x_1^2 - 1.05x_1^4 + \frac{x_1^6}{6} + x_1x_2 + x_2^2.$$
 (38)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, 0]$.

29 Zakharov Function

Figure 27: Zakharov function.

Given a *d*-dimensional input, $\mathbf{x} \coloneqq [x_1, \dots, x_d] \in [-5, 10]^d$,

$$f(\mathbf{x}) = \sum_{i=1}^{d} x_i^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^2 + \left(\sum_{i=1}^{d} 0.5ix_i\right)^4.$$
 (39)

A global optimum is 0, at $\mathbf{x}^{\star} = [0, \dots, 0] \in \mathbb{R}^d$.

References

- J. Kim and S. Choi. BayesO: A Bayesian optimization framework in Python. https://bayeso.org, 2017.
- S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and datasets. http://www.sfu.ca/~ssurjano, 2013.