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Abstract

A geometric shape is often made of multiple fragments or parts. Assembling the
fragments into the target object can be viewed as an interesting combinatorial
problem with a variety of applications in science and engineering. Previous re-
lated work, however, focuses on tackling limited cases, e.g., primitive fragments
of identical shapes or jigsaw-style fragments of textured shapes, which greatly
mitigate the combinatorial challenge. In this work we introduce a challenging
problem of shape assembly with textureless fragments of arbitrary shapes and
propose a learning-based approach to solving it. Given a target object and a set
of candidate fragments, the proposed model learns to select one of the fragments
and place it into a right place. Our model processes the candidate fragments in
a permutation-equivariant manner and can generalize to cases with an arbitrary
number of fragments and even with a different target object. We demonstrate our
method on shape assembly tasks with different shapes and assembling scenarios.

1 Introduction

There have been a large volume of studies [13] on different types of shape assembly or composition
problems in a variety of fields such as biology [17], earth science [19], archaeology [7], and tiling
puzzle [14]. If we focus on shapes without textures, the problem can be formulated as a combinatorial
optimization problem, which aims to occupy a target object using candidate parts [6], and also be
related to the bin packing problem [3], which is one of the representative problems in the combinatorial
optimization. Most previous related work, however, tackles shape assembly problems relying on
distinct patterns across fragments or parts, e.g., compatible junctions or textures between candidate
fragments. For example, a jigsaw puzzle problem finds a correct combination by comparing and
matching neighbors of each fragment where the fragments contain visual information [5]. In general
cases where such useful hints are not available (i.e., no texture and indistinctive junctions), assembling
geometric fragments becomes challenging.

In this work, we introduce a simple yet challenging shape assembly problem in the following scenario.
(i) Stochastic partitioning process [16] splits a two-dimensional target object so that their fragments
become arbitrary polygons. (ii) The set of fragments are given to reconstruct the target object. (iii)
The fragments are supposed to assemble from bottom to top and from left to right; this constraint
may lower the degree of difficulty but can render the problem closer to some real environments [4].
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Under the scenario mentioned above, we can solve the shape assembly problem with one of (i)
brute-force approach, (ii) metaheuristic [1], (iii) sequential model-based optimization approach [2],
and (iv) learning-based approach [12]. Due to the combinatorial explosion, a brute-force approach is
infeasible for our purpose when the number of fragments increases. Moreover, both metaheuristic and
sequential model-based optimization are not suitable to solve this problem, since such approaches
are time-consuming for their inner loop steps. We propose an efficient and effective learning-based
approach as an alternative. Given a target object and a set of candidate fragments, the proposed
model learns to select one of the fragments and place it into a right place; it processes the candidate
fragments in a permutation-invariant manner and can generalize to cases with an arbitrary number of
fragments and even with a different target object. We demonstrate our method on shape assembly
tasks with different shapes and assembling scenarios.

2 Problem Definition

Figure 1: Shape fragmentation examples.

Geometric Shape Assembly Suppose that we
are given a set of fragments X = {xj}Nj=1 and
a target object S on a space Φ. In this work we
assume polygonal shapes in a two-dimensional
space. We sequentially assemble those fragments
into the target object; at each step, a fragment xi

is sampled without replacement and placed on
top of the current shape c considering the target
object S. The goal is to build the target object S
using all the fragments.

Figure 2: Assembling scenario. A fragment x is
assembled into a shape c. At every step, we select
which fragment is assembled and where fragment
is assembled.

Shape Fragmentation Dataset We create a
dataset by partitioning a shape into multiple frag-
ments, which can be used to pose its reverse task,
i.e., an assembly problem. Inspired by binary
space partitioning algorithm [18], we randomly
split a target object and create a set of random
fragments for each target object. The procedure is
summarized in Algorithm 2 and some examples
are shown in Figure 1. After K times of binary
partitioning, we obtain N = 2K fragments.

3 Our Approach

To address the shape assembly problem, we propose a model that learns to select a fragment from
current candidates and place it on top of a current shape to build the target object. The model takes
two inputs: (i) the remaining shape S − c for the target object, which is the result of assembled
fragments at the previous steps; (ii) the current set of fragments X , which consists of all candidates
for the next placement. It then predicts which xi ∈ X should be used and where it should be placed
in Φ. We assemble all the fragments by iteratively running our model until no candidate remains. The
procedure is described in Algorithm 1.

To make a proper decision, the model needs to extract geometric information of the fragments and
the shape, and also understand the relations among them. We train our model by supervising it with a
large number of episodes where a fragment and its position in the next time step is known from a
current shape and candidate fragments. We generate such episodes from the shape fragmentation
dataset by creating a sequence of fragments from the bottom left to the top right.

Fragment Relation Networks Our model, dubbed the fragment relation network (FRN), considers
a candidate fragment xi in the context of the other candidates X \ xi and the remaining shape S − c,
and produces two outputs: (i) the selection probability for xi, which means how likely xi is selected.
(ii) the placement probability map for xi, which means how likely each position is for xi. As shown
in Figure 3, FRN contains two branches for the two outputs, the fragment selection network (i.e.,
FRN-Sel) and the fragment placement network (i.e., FRN-Loc). Both networks share many learnable
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Figure 3: Overall architecture of our model. Given a target object S, a current shape of placed
fragments c, and current candidate fragments X , it takes as input the remaining shape S − c and the
current candidate fragments X and predicts the probabilities of fragments yi for selection and the
probability map Mi for placement. The fragment encoder (orange) is shared across all fragments.

parameters that are parts of two encoders and fragment relation attention module (FRAM). FRAM is
inspired by Transformer network [20] and captures the relationship between the candidate fragments.

Fragment Selection FRN-Sel (the lower part of Figure 3) is a binary classifier taking as input
xi, S − c, and X \ xi: yi = FRN-Sel (xi;S − c,X \ xi) ∈ R, where xi ∈ X . Since, in particular,
FRN-Sel takes into account fragment relations with FRAM, it can choose the next fragment by
considering the remains of fragments. Furthermore, as will be discussed in Appendix D, the number
of parameters in FRN does not depend on the number of fragments, which implies that the cardinality
of X can be varied. This property helps our network to handle variable-length set of fragments.

Fragment Placement FRN-Loc (the upper part of Figure 3) determines the position of x ∈ X
by predicting a probability map over pixels: Mi = FRN-Loc (xi;S − c,X \ xi) ∈ Rw×h. This
network is implemented as an encoder-decoder architecture with skip connections between them, in
order to compute pixel-wise probabilities with convolution and transpose convolution operations. It
can reduce the number of learnable parameters due to the absence of the last fully-connected layer.

Fragment Relation Attention Module We suggest an attention-based module FRAM, which
considers high-order relationship between the remaining fragments using multi-head attention net-
works [20]. For FRAM, we use multi-head attention and scaled dot-product attention. As proposed
by Vaswani et al. [20], given X ∈ Rn1×d and Y ∈ Rn2×d, multi-head attention is composed of
multiple scaled dot-product attentions:

DP(Q,K,V) = σ

(
QK>√
d1

)
V and MH(X,Y,Y) = [DP1, . . . ,DPh]WO, (1)

where Q ∈ Rn1×d1 , K ∈ Rn2×d1 , V ∈ Rn2×d2 , DPi = DP(XWQ
i ,YWK

i ,YWV
i ), σ is a

softmax function, h is the number of heads, and WO ∈ Rhd2×d is the learnable parameters. To
improve the expression power, X and Y are projected by the different parameter sets WQ ∈ Rd×d1 ,
WK ∈ Rd×d1 , and WV ∈ Rd×d2 .

To express a set of the remaining fragments to a latent representation h, we leverage the multi-
head attention: H = MH(X ,X ,X ) ∈ R|X |×d and h = MH(1,H,H) ∈ Rd, where 1 ∈ R1×d is
an all-ones matrix. Without loss of generality, the aforementioned equations can take X and H,
respectively. Moreover, MH(X ,X ,X ) can be stacked by feedingH to the multi-head attention as an
input, and MH(1,H,H) can be also stacked in the similar manner. Note that h becomes R1×d, but
we straightforwardly employ it as a Rd-shaped representation.

FRAM is a generalization of global feature aggregation methods such as average pooling and max
pooling across instances, so that it allows high-order interaction between instances and aggregates
instance-wise representations (i.e.,H) with learnable parameters. The final output is determined by
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(a) Square (b) Pentagon (c) Hexagon

Figure 4: Shape assembly results for Square, Pentagon and Hexagon shape. The orange lines
delineate target objects. For each target shape, the results of simulated annealing (SA), Bayesian
optimization (BO), V-GAN (only for Square), and ours are compared.

selecting the fragment with the index of maximum yi: i? = arg maxi∈{1,...,|X |} yi. After choosing
the fragment, the position with the maximum probability on Mi? is selected for the placement.

4 Experimental Results

Experimental Setup As shown in Figure 1, we evaluate our method and the existing methods
on three types of target objects: (i) Square, (ii) Pentagon, and (iii) Hexagon. Unless otherwise
specified, we use 5,000 examples each of them is partitioned into 8 fragments using binary space
partitioning. We use 64%, 16%, and 20% of the examples for training, validation, and test datasets,
respectively.

Note that there is no prior methods that tackle shape assembly for textureless fragments. Therefore,
we apply two types of classic optimization methods for this task. Besides, we apply an approach
that is based on generative adversarial networks. Due to a page limit, the architectures of FRN
and V-GAN will be presented in the appendices. We measure an assembling quality via IoU:
IoU(c, S) = area(c∩S)

area(c∪S) , where c is an assembled shape and S is a target object.

Table 1: Quantitative results on three shapes.

mIoU Time

Square

SA 0.8524 2,700 sec.
BayesOpt 0.8329 1,180 sec.
V-GAN 0.5615 < 1 sec.

Ours 0.8938 < 1 sec.

Pentagon

SA 0.8349 2,584 sec.
BayesOpt 0.7812 1,240 sec.
V-GAN N/A

Ours 0.9262 < 1 sec.

Hexagon

SA 0.8230 2,520 sec.
BayesOpt 0.7745 1,210 sec.
V-GAN N/A

Ours 0.9323 < 1 sec.

Main Result We compare our approach to
other baseline methods on the assembly of differ-
ent target objects. Results on Square, Pentagon,
and Hexagon shapes are summarized in Table 1.

V-GAN requires a fixed number of vertices for
partitioned fragments, which is only applicable
to Square target shape. We find that our method
consistently covers much more area than base-
lines within less time budget. Both simulated
annealing and Bayesian optimization struggle to
place fragments in the proper position, resulting
in many overlaps between fragments. They also
take much longer time compared to our method
in all experimental conditions. On the other hand,
V-GAN takes much less time than other baseline
methods while significantly underperforms com-
pared to other methods. Qualitative results are
presented in Figure 4.

5 Conclusion

In this paper, we solve a two-dimensional shape assembly problem with our proposed neural network
FRN. It predicts the next fragment and its corresponding position where the fragments that would be
assembled are given, by considering fragment relations with an attention-based module FRAM. We
show that our method outperforms other baseline methods such as simulated annealing, Bayesian
optimization, and a simple learning-based approach with adversarial training, in the circumstances
each of which deals with one of three different target geometric shapes.
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Appendices

In this material, we describe the detailed contents that supplement our main article.

Appendix A Details of Shape Fragmentation

(a) Partitioning 1 (b) Partitioning 2 (c) Partitioning 3

Figure 5: Fragmentation examples on Square by the number of partitions.

We divide a target geometric shape into fragments using hyperplanes by a binary space partitioning
algorithm [18]. The number of fragments increases exponentially with the number of partitions.
Some partitioning examples are shown in Figure 5.

We create a shape fragmentation dataset under two constraints that prevent generating small fragments.
First, the hyperplane does not cross adjacent edges of the given polygon. Second, the position that
the hyperplane will pass through is randomly selected between the range of ± 25% of edge length
from the center of the edge. The dataset we used is composed of 5000 samples.

Appendix B Algorithms

The algorithms described in the main article are represented in Algorithm 1 and Algorithm 2.

Algorithm 1 Geometric Shape Assembly Procedure
Input: fragments X = {xi}Ni=1 and a target object S
Output: output shape c.

1: Initialize current shape c (as null) on a space Φ.
2: Initialize remaining shape S − c
3: while X 6= ∅ do
4: Select a fragment xi ∈ X and place it on Φ.
5: c← shape c updated by the placement of xi.
6: Calculate the remaining shape S − c.
7: X ← X \ xi

8: end while
9: return c
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Algorithm 2 Shape Fragmentation
Input: A target object S, the number of partitions K.
Output: Fragments partitioned XK = {xi}2

K

i=1.
1: function partitionFragment(x)
2: Choose where to partition.
3: Partition x to x+,x−.
4: return x+,x−
5: end function

6: X0 = {S}.
7: for i = 1, . . . ,K do
8: Xi = {}
9: for all x ∈ Xi−1 do

10: x+,x− = partitionFragment(x)
11: Xi ← Xi + {x+,x−}
12: end for
13: end for
14: return a set of fragments XK

Appendix C Details of Experiment

C.1 Training

We alternately train our neural network with the following objectives. Since we first choose the next
fragment, and then place the selected fragment, the gradient updates by two objectives should be
separately applied. The objective for the fragment selection part is

Lselect =

M∑
m=1

−t>m log σ(ym), (2)

where tm is a one-hot representation of true fragment, each entry of ym is computed by FRN-Sel,
and σ is a softmax function.

Next, the objective for the fragment placement part is

Lplace =

M∑
m=1

−vector(τm)> log vector(Mm), (3)

where τm ∈ Rw×h is a one-hot representation of true position, Mm is computed by FRN-Loc, and
vector is a function for vectorizing a matrix.

Both Eq. (2) and Eq. (3) compute the summation of the cross-entropy over outputs that produce
through a permutation-equivariant network for logits. As will be described in the subsequent sections,
this property let us examine FRN in various circumstances. Moreover, since our network does not
rely on the sequence (or history) of fragments, we are able to apply a mini-batch training scheme,
which enables us to train offline.

C.2 Baselines

We select the following three baseline methods:

Simulated Annealing (SA) [15] It solves the problem via optimization. SA computes the overlap
to a target object;

Bayesian Optimization (BayesOpt) [2] A powerful method to optimize a black-box function. We
find the position of given fragments to maximize the overlap between each fragment and target object;
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LayoutGAN Modified for Vertex Inputs (V-GAN) [12] It is a modification of [12]. Since Lay-
outGAN assumes that fragment shapes are always fixed and only finds their positions, we modify the
generator structure to a neural network that takes fragment vertices and predicts their positions. This
baseline is composed of the generator, and the discriminator that distinguishes real and fake examples
is trained via an adversarial training strategy.

C.3 Details of Model Architecture

FRN FRN consists of FRN-Sel that selects next fragment and FRN-Loc that predicts center coordi-
nates of the chosen fragment. There exist 7 hyperparameters in FRN with 3 specifically in FRAM.
The default dimension of fully connected layer in the whole pipeline is fixed to 256 throughout
the experiments. For the training, we use batch size of 32 and ADAM optimizer [10] for both
FRN-Sel and FRN-Loc with learning rate of 5 × 10−4 and 2 × 10−3 respectively. FRN-Sel is a
convolutional neural network (CNN) followed by FRAM and MLP block. FRN-Loc is convolutional
encoder-decoder with MLP block followed by an additional fully-connected layer inserted in between.
Each encoder for FRN-Loc and FRN-Sel do not share the weights, and thus are trained with different
loss. Our FRAM follows similar setting of original Transformer [20] model with 2048 hidden units
and 8 attention heads.

V-GAN It follows typical setup of generative adversarial network [8], having both generator and
discriminator. Specifically, generator takes fragment’s vertex coordinates as input and predicts center
coordinates. Discriminator then makes real or fake decision based on adjusted vertex coordinates.
For training, we use batch size of 128 and ADAM optimizer with learning rate of 1× 10−4.

Appendix D Discussion and Related Work

In this section, we discuss the properties of our problem and FRN, based on the numerical results.
Moreover, we mention about the previous studies related to our work.

As presented in Table 1, the coverage result that assembles Hexagon is better than the results for
Square and Pentagon. It implies that if a target object becomes complicated and contains more
information, the problem becomes easily solvable. From this observation, we can readily induce our
formulation to the packing problem with inherent information such as [5] and [14].

Our proposed network FRN can be thought as a permutation-equivariant network, which satisfies

f(π([x1, . . . ,xn]>)) = π[f([x1, . . . ,xn]>)], (4)

where f : Rn×d → Rn×d′
is a neural network that outputs a set and π is a permutation function

along the first dimension. Guttenberg et al. [9] suggest a permutational layer to handle the different
inputs and not depend on the specific ordering of inputs. Zaheer et al. [21] derive the necessary and
sufficient conditions on permutation-equivariant networks. Lee et al. [11] propose an attention-based
permutation-equivariant block for set operations.

By this definition of permutation-equivariance, we can describe the following proposition for FRN:

Proposition 1 By the shared architecture over the remaining fragments X , FRN is permutation-
equivariant. In particular, the number of learnable parameters does not depend on the dimensionality
of logits y and the shape of position probability Mi for i ∈ {1, . . . , |X |}.

As computed by FRN-Sel and FRN-Loc, their outputs can handle variable-sized X and the ordering
of X affects the ordering of the outputs, satisfying Eq. (4). The experimental results support that our
method can learn this challenging scenario with the permutation-equivariant neural network.
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