Bayesian Optimization and Its Applications

Jungtaek Kim jungtaek.kim@pitt.edu

University of Pittsburgh https://jungtaek.github.io

February 2, 2023

Table of Contents

Bayesian Optimization

Motivation Surrogate Models Acquisition Functions Acquisition Function Optimization Overall Procedure of Bayesian Optimization Relationship to Other Algorithms BayesO

Applications of Bayesian Optimization

Various Problems in Science and Engineering Automated Machine Learning Sequential Assembly

Takeaway

Bayesian Optimization

How Can We Make a Better Chocolate-Chip Cookie Using Mathematical Optimization or Machine Learning?

Taken from this link.

How Can We Make a Better Chocolate-Chip Cookie Using Mathematical Optimization or Machine Learning?

- Google Brain Team carried out this real-world optimization problem at their Pittsburgh and Mountain View offices [Kochanski et al., 2017].
- A goal is to find an optimal recipe where a list of ingredients to make cookies and their *search space* are given:
 - for example, in the third Pittsburgh study.

flour is a fixed quantity.

total sugar, chip quantity, and butter are optimized as continuous variables,

salt, vanilla extract, egg, orange extract, baking soda, and cavenne pepper are optimized as discrete variables.

1 University of

5/55

and chip type, i.e., dark, milk, and white, is optimized as a categorical variable.

How Can We Make a Better Chocolate-Chip Cookie Using Mathematical Optimization or Machine Learning?

- Cookies are evaluated by taster's surveys.
- Since baking cookies and evaluating them take much time, the authors employed Bayesian optimization in their problem.
- They conducted a pilot experiment for the first Pittsburgh study, 35 trials for the second Pittsburgh study, and 49 trials for the third Pittsburgh study, for 8 days.
- A recipe of the best-rated Pittsburgh trial is

167 grams of all-purpose flour, 196 grams of dark chocolate chips, 1/2 tsp. baking soda, 1/4 tsp. salt, 1/4 tsp. cayenne pepper, 108 grams of sugar, 30 grams of egg, 129 grams of butter, 3/8 tsp. orange extract, 1/2 tsp. vanilla extract.

University of

[[]Kochanski et al., 2017] G. Kochanski, D. Golovin, J. Karro, B. Solnik, S. Moitra, and D. Sculley. Bayesian optimization for a better dessert. In New Workshop on Bayesian Optimization (BayesOpt), 2017.

Mathematical Optimization

Figure 1: Branin function.

► Given an objective f : A → R where A is some set, it seeks a *minimum* or *maximum* of the target function:

$$\mathbf{x}^* = rg\min f(\mathbf{x}),$$
 (1)

or

$$\mathbf{x}^* = \arg\max f(\mathbf{x}). \tag{2}$$

Mathematical Optimization

► To optimize an objective, we can select one of such strategies:

- random searches;
- gradient-based approaches;
- convex programming;
- evolutionary algorithms;
- simulated annealing.
- Each strategy has the advantage in the corresponding conditions of optimization problem.
- However, under certain circumstances, Bayesian optimization is the most effective method to solve some class of mathematical optimization problems.

Global Optimization

Global optimization solves a problem to find a global minimizer x*:

$$\mathbf{x}^{\star} = \operatorname*{arg\,min}_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x}),\tag{3}$$

where $\mathcal{X} \subset \mathbb{R}^d$ is a compact search space.

Black-Box Optimization

Definition 1 (Black-box function)

If an objective f, defined in (3), satisfies the following statements, we call it as a black-box function:

- (i) a function f is unknown, but evaluations of f are available;
- (ii) a gradient ∇f and Hessian matrix $\nabla^2 f$ are also unknown;
- (iii) the condition that f is Lipschitz continuous is known;
- (iv) moreover, differentiability and continuity of f are unknown,

on a compact search space $\ensuremath{\mathcal{X}}.$

Black-Box Optimization

- According to recent work [Hansen et al., 2010, Turner et al., 2020], we can apply some classes of possible candidates:
 - random search [Bergstra and Bengio, 2012];
 - evolutionary strategies [Hansen, 2006, 2016];
 - Lipschitzian optimization method without the Lipschitz constant [Jones et al., 1993, Jones and Martins, 2021];
 - Bayesian optimization [Kushner, 1964, Močkus, 1975];
 - sequential model-based optimization with tree-based surrogates [Hutter et al., 2011].
- Unfortunately, there is no rule of thumb for choosing the best approach to solving a certain objective without directly conducting the method on the optimization problem.

[[]Hansen et al., 2010] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In GECCO, 2010.

[[]Turner et al., 2020] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian optimization is superior to random series of the burgh machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In NeurIPS Competition and Demonstration Track, 2020. 11/55

Bayesian Optimization

- Bayesian optimization [Brochu et al., 2010, Garnett, 2023] is a promising method to find a global optimizer of black-box objective function.
- Evaluation of the objective is only available.
- Since we do not know a target function, it optimizes an *acquisition function*, instead of the target function.
- An acquisition function is defined with factors for exploiting available information up to current iteration and exploring an unexplored region.

[[]Brochu et al., 2010] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application between the annual arXiv:1012.2599, 2010.

[[]Garnett, 2023] R. Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Surrogate Models

- A surrogate model estimates a true objective function, where *historical evaluations* are given.
- ► To balance a trade-off between *exploration* and *exploitation*, it predicts a function estimate and its uncertainty estimate over any query x ∈ X.
- Gaussian process regression [Rasmussen and Williams, 2006] is widely used as a surrogate model.
- Also, Student-t process regression [Martinez-Cantin et al., 2018], random forest regression [Hutter et al., 2011], tree-based surrogates [Kim and Choi, 2022], and Bayesian neural network [Springenberg et al., 2016] have been used.

[[]Rasmussen and Williams, 2006] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

[[]Hutter et al., 2011] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In *LION*, 2011. [Springenberg et al., 2016] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian neural networks. In *NeurIPS*, 2016.

[[]Martinez-Cantin et al., 2018] R. Martinez-Cantin, K. Tee, and M. McCourt. Practical Bayesian optimization in the presence of outliers. In AIS 1998, Duteburgh [Kim and Choi, 2022] J. Kim and S. Choi. On uncertainty estimation by tree-based surrogate models in sequential model-based optimization. In AISTATS, 20223/55

Surrogate Models

Figure 2: Examples of surrogate models.

Gaussian Process

- A collection of random variables, any finite number of which have a joint Gaussian distribution [Rasmussen and Williams, 2006].
- Generally, a Gaussian process is defined as

$$f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')),$$
 (4)

where

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))].$$
(5)
(6)

[[]Rasmussen and Williams, 2006] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

Gaussian Process Regression

Figure 3: Gaussian process regression for a function cos(x) + 2 with an observation noise.

Gaussian Process Regression

 One of popular covariance functions, the exponentiated quadratic covariance function in one dimension is defined as

$$k(x, x') = s^{2} \exp\left(-\frac{1}{2l^{2}} (x - x')^{2}\right) + \sigma_{n}^{2} \delta_{xx'},$$
(7)

where s is a signal scale, l is a length scale and σ_n^2 is a noise variance [Rasmussen and Williams, 2006].

▶ Posterior mean function $\mu(\mathbf{x}^*; \mathbf{X}, \mathbf{y})$ and variance function $\sigma^2(\mathbf{x}^*; \mathbf{X}, \mathbf{y})$:

$$\mu(\mathbf{x}^*; \mathbf{X}, \mathbf{y}) = \mathbf{k}(\mathbf{x}^*, \mathbf{X}) (\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I})^{-1} \mathbf{y},$$
(8)

$$\sigma^{2}(\mathbf{x}^{*}; \mathbf{X}, \mathbf{y}) = k(\mathbf{x}^{*}, \mathbf{x}^{*}) - \mathbf{k}(\mathbf{x}^{*}, \mathbf{X})(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{n}^{2}\boldsymbol{I})^{-1}\mathbf{k}(\mathbf{X}, \mathbf{x}^{*}),$$
(9)

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^{n}$.

[Rasmussen and Williams, 2006] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

Gaussian Process Regression

If non-zero mean prior is given, posterior mean and variance functions:

$$\mu(\mathbf{x}^*; \mathbf{X}, \mathbf{y}) = \mathbf{k}(\mathbf{x}^*, \mathbf{X}) (\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I})^{-1} (\mathbf{y} - \boldsymbol{\mu}_p(\mathbf{X})) + \mu_p(\mathbf{x}^*),$$
(10)
$$\sigma_p^2(\mathbf{x}^*; \mathbf{X}, \mathbf{y}) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_p^2 \mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^*)$$
(11)

$$\sigma^{2}(\mathbf{x}^{*}; \mathbf{X}, \mathbf{y}) = k(\mathbf{x}^{*}, \mathbf{x}^{*}) - \mathbf{k}(\mathbf{x}^{*}, \mathbf{X})(\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{n}^{2}\mathbf{I})^{-1}\mathbf{k}(\mathbf{X}, \mathbf{x}^{*}),$$
(11)

where μ_p is a prior mean function, and $\mu_p(\mathbf{X}) = [\mu_p(\mathbf{x}_1), \dots, \mu_p(\mathbf{x}_n)].$

Student-*t* **Process Regression**

If non-zero mean prior is given, posterior mean and variance functions:

$$\mu(\mathbf{x}^*; \mathbf{X}, \mathbf{y}) = \mathbf{k}(\mathbf{x}^*, \mathbf{X}) \tilde{\mathbf{K}}^{-1} \tilde{\mathbf{y}} + \mu_p(\mathbf{x}^*),$$
(12)

$$\sigma^{2}(\mathbf{x}^{*}; \mathbf{X}, \mathbf{y}) = \frac{\nu + \tilde{\mathbf{y}}^{\top} \tilde{\mathbf{K}}^{-1} \tilde{\mathbf{y}} - 2}{\nu + n - 2} \left(k(\mathbf{x}^{*}, \mathbf{x}^{*}) - \mathbf{k}(\mathbf{x}^{*}, \mathbf{X}) \tilde{\mathbf{K}}^{-1} \mathbf{k}(\mathbf{X}, \mathbf{x}^{*}) \right),$$
(13)

where μ_p is a prior mean function, $\boldsymbol{\mu}_p(\mathbf{X}) = [\mu_p(\mathbf{x}_1), \dots, \mu_p(\mathbf{x}_n)]$, $\tilde{\mathbf{y}} = \mathbf{y} - \boldsymbol{\mu}_p(\mathbf{X})$, and $\tilde{\mathbf{K}} = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \boldsymbol{I}$.

• The parameter ν for the posterior distribution is set to $\nu + n$.

Random Forest Regression

Posterior mean and variance functions:

$$\mu \left(\mathbf{x}^*; \{ \mathcal{T}_b \}_{b=1}^B, \mathbf{X}, \mathbf{y} \right) = \frac{1}{B} \sum_{b=1}^B \mu_b(\mathbf{x}^*)$$
$$= \frac{1}{B} \sum_{b=1}^B \sum_{\tau \in \boldsymbol{\tau}_{b,l}} \mu_\tau \mathbf{1}_{\mathbf{x}^* \in \tau}, \tag{14}$$

$$\sigma^{2}(\mathbf{x}^{*}; \{\mathcal{T}_{b}\}_{b=1}^{B}, \mathbf{X}, \mathbf{y}) = \frac{1}{B} \sum_{b=1}^{B} \left(\sigma_{b}^{2}(\mathbf{x}^{*}) + \mu_{b}^{2}(\mathbf{x}^{*}) \right) - \mu \left(\mathbf{x}^{*}; \{\mathcal{T}_{b}\}_{b=1}^{B}, \mathbf{X}, \mathbf{y} \right)^{2}$$
$$= \frac{1}{B} \sum_{b=1}^{B} \left(\left(\sum_{\tau \in \boldsymbol{\tau}_{b,l}} \sigma_{\tau} \mathbf{1}_{\mathbf{x}^{*} \in \tau} \right)^{2} + \left(\sum_{\tau \in \boldsymbol{\tau}_{b,l}} \mu_{\tau} \mathbf{1}_{\mathbf{x}^{*} \in \tau} \right)^{2} \right)$$
$$- \left(\frac{1}{B} \sum_{b=1}^{B} \mu_{b}(\mathbf{x}^{*}) \right)^{2}. \tag{15}$$

Acquisition Functions

- ▶ An acquisition function acquires the *next sample to evaluate* by a black-box function *f*.
- ▶ It is designed to consider *both exploration and exploitation factors*.
- As a popular choice of acquisition functions, the following acquisition functions:
 - probability of improvement (PI) [Kushner, 1964];
 - expected improvement (EI) [Močkus et al., 1978];
 - Gaussian process upper confidence bound (GP-UCB) [Srinivas et al., 2010],

have been suggested.

[[]Kushner, 1964] H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1): 97–106, 1964.

[[]Močkus et al., 1978] J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117–129, 1978.

[[]Srinivas et al., 2010] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental Uspurgh In ICML, 2010.

Acquisition Functions

- Diverse acquisition functions have been also proposed:
 - knowledge gradient [Frazier et al., 2009];
 - entropy search [Hennig and Schuler, 2012];
 - predictive entropy search [Hernández-Lobato et al., 2014];
 - clustering-guided Gaussian process upper confidence bound [Kim and Choi, 2018b];
 - portfolio allocation of various acquisition functions [Hoffman et al., 2011];
 - alternatives of expected improvement by tree-structured Parzen estimator [Bergstra et al., 2011] and class-probability estimation [Tiao et al., 2021].

[[]Frazier et al., 2009] P. I. Frazier, W. B. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21(4):599–613, 2009.

[[]Hoffman et al., 2011] M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI, 2011.

[[]Bergstra et al., 2011] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NeurIPS, 2011.

[[]Hennig and Schuler, 2012] P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. JMLR, 13:1809–1837, 2012.

[[]Hernández-Lobato et al., 2014] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient global optimization of type of plack-box functions. In NeurIPS, 2014.

[[]Kim and Choi, 2018b] J. Kim and S. Choi. Clustering-guided GP-UCB for Bayesian optimization. In ICASSP, 2018b.

Popular Acquisition Functions (Minimization Case)

Suppose that

$$(\mathbf{x}^{\dagger}, y^{\dagger}) = \operatorname*{arg\,min}_{(\mathbf{x}, y) \in \mathcal{D}_{t-1}} y, \tag{16}$$

$$\mu(\mathbf{x}; \mathbf{X}, \mathbf{y}) = \mu(\mathbf{x}; \mathcal{D}_{t-1}), \tag{17}$$

$$\sigma(\mathbf{x}; \mathbf{X}, \mathbf{y}) = \sigma(\mathbf{x}; \mathcal{D}_{t-1}).$$
(18)

University of

23/55

PI criterion [Kushner, 1964] is defined as

$$a_{\mathrm{PI}}(\mathbf{x} \mid \mathcal{D}_{t-1}) = \begin{cases} \Phi\left(\frac{y^{\dagger} - \mu(\mathbf{x}; \mathcal{D}_{t-1})}{\sigma(\mathbf{x}; \mathcal{D}_{t-1})}\right) & \text{if } \sigma^{2}(\mathbf{x}; \mathcal{D}_{t-1}) > 0, \\ 0 & \text{otherwise,} \end{cases}$$
(19)

where Φ is a cumulative distribution function of the standard normal distribution

[[]Kushner, 1964] H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of arbitrary arbitrary multipeak curve in the presence of noise. Journal of arbitrary arbitrary multipeak curve in the presence of noise. Engineering, 86(1); 97-106, 1964.

Popular Acquisition Functions (Minimization Case)

El criterion [Močkus et al., 1978] is defined as

$$a_{\mathrm{EI}}(\mathbf{x} \mid \mathcal{D}_{t-1}) = \begin{cases} \sigma(\mathbf{x}; \mathcal{D}_{t-1}) \left(z(\mathbf{x}) \Phi \left(z(\mathbf{x}) \right) + \phi \left(z(\mathbf{x}) \right) \right) & \text{if } \sigma^2(\mathbf{x}; \mathcal{D}_{t-1}) > 0, \\ 0 & \text{otherwise,} \end{cases}$$
(20)

where $z(\mathbf{x}) = \frac{y^{\dagger} - \mu(\mathbf{x}; \mathcal{D}_{t-1})}{\sigma(\mathbf{x}; \mathcal{D}_{t-1})}$, Φ is a cumulative distribution function of the standard normal distribution, and ϕ is a probability density function of the standard normal distribution.

GP-UCB criterion [Srinivas et al., 2010] is defined as

$$a_{\text{UCB}}(\mathbf{x} \mid \mathcal{D}_{t-1}) = -\mu(\mathbf{x}; \mathcal{D}_{t-1}) + \beta_t \sigma(\mathbf{x}; \mathcal{D}_{t-1}), \qquad (21)$$

where β_t is a trade-off hyperparameter at iteration t.

[[]Močkus et al., 1978] J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117–129, 1978.

[[]Srinivas et al., 2010] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and expendence of the spurgh In ICML, 2010.

Acquisition Function Optimization

- We should find a global optimizer of acquisition function, to determine the next query point.
- But, in practice, either *local optimizer* or *multi-started local optimizer* can be a good option as a substitute of global optimizer.
- Analyses on these selections are provided in [Kim and Choi, 2020].
- The analyses allow us to choose local optimizer or multi-started local optimizer by showing a *bound of instantaneous regret difference* theoretically and empirically.

[[]Kim and Choi, 2020] J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In ECML-PKDD, 2020.

On Local Optimizers of Acquisition Functions in Bayesian Optimization

Theorem 2 (Instantaneous regret difference between global and local optimizers) Given $\delta_l \in [0,1)$ and $\epsilon_l, \epsilon_1, \epsilon_2 > 0$, the regret difference for a local optimizer $\mathbf{x}_{t,l}$ at iteration t, $|r_{t,g} - r_{t,l}|$ is less than ϵ_l with a probability at least $1 - \delta_l$:

$$\mathbb{P}\big(\left|r_{t,g} - r_{t,l}\right| < \epsilon_l\big) \ge 1 - \delta_l,\tag{22}$$

where $\delta_l = \frac{\gamma}{\epsilon_1}(1-\beta_g) + \frac{M}{\epsilon_2}$, $\epsilon_l = \epsilon_1 \epsilon_2$, $\gamma = \max_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}} \|\mathbf{x}_i - \mathbf{x}_j\|_2$ is the size of \mathcal{X} , β_g is the probability that a local optimizer of the acquisition function collapses with its global optimizer, and M is the Lipschitz constant.

[[]Kim and Choi, 2020] J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In ECML-PKDD, 2020.

On Local Optimizers of Acquisition Functions in Bayesian Optimization

Theorem 3 (Instantaneous regret difference between global and multi-started local optimizers)

Given $\delta_m \in [0,1)$ and $\epsilon_m, \epsilon_2, \epsilon_3 > 0$, a regret difference for a multi-started local optimizer $\mathbf{x}_{t,m}$, determined by starting from N initial points at iteration t, is less than ϵ_m with a probability at least $1 - \delta_m$:

$$\mathbb{P}\big(|r_{t,g} - r_{t,m}| < \epsilon_m\big) \ge 1 - \delta_m,\tag{23}$$

where $\delta_m = \frac{\gamma}{\epsilon_3} (1 - \beta_g)^N + \frac{M}{\epsilon_2}$, $\epsilon_m = \epsilon_2 \epsilon_3$, $\gamma = \max_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}} \|\mathbf{x}_i - \mathbf{x}_j\|_2$ is the size of \mathcal{X} , β_g is the probability that a local optimizer of the acquisition function collapses with its global optimizer, and M is the Lipschitz constant.

▶ By following our intuition, this bound is tighter than the bound provided in Theorem 2.

[[]Kim and Choi, 2020] J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In ECML-PKDD, 2020.

On Local Optimizers of Acquisition Functions in Bayesian Optimization

Figure 4: Empirical results on Theorems 2 and 3.

[[]Kim and Choi, 2020] J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In ECML-PKDD, 2020.

On Local Optimizers of Acquisition Functions in Bayesian Optimization

Table 1: Time (sec.) consumed in optimizing acquisition functions.

	Beale	Branin	Cosines (8 dim.)	Hart- mann6D	Holder- table	Rosen- brock	Six-Hump Camel	Sphere
DIRECT	3.434	2.987	2.508	0.728	2.935	13.928	4.639	10.707
L-BFGS-B (1)	0.010	0.004	0.023	0.026	0.017	0.005	0.010	0.030
L-BFGS-B (10)	0.096	0.036	0.224	0.253	0.177	0.050	0.100	0.311
L-BFGS-B (100)	0.977	0.363	2.224	2.533	1.760	0.504	0.969	3.048
L-BFGS-B (1000)	9.720	3.633	22.306	25.305	17.629	5.049	9.682	30.764

Multi-started local optimizer provides a more efficient approach than global optimizer, in terms of computational complexities.

University of

Overall Procedure of Bayesian Optimization

Algorithm 1 Overall Procedure of Bayesian Optimization

Input: A domain of interest $\mathcal{X} \subset \mathbb{R}^d$, an initial set of data \mathcal{D}_0 , an evaluation budget T, and a true unknown objective f.

Output: The best optimizer found until T, \mathbf{x}_{best} .

1: for t = 1, ..., T do

- 2: Construct a surrogate model $\hat{f}(\mathbf{x}; \mathcal{D}_{t-1})$.
- 3: Choose the next point to evaluate by maximizing an acquisition function, defined with \hat{f} : $\mathbf{x}_t = \arg \max_{\mathbf{x} \in \mathcal{X}} a(\mathbf{x} \mid \mathcal{D}_{t-1}).$
- 4: Evaluate \mathbf{x}_t by f: $y_t = f(\mathbf{x}_t) + \epsilon_t$, where ϵ_t is observation noise.
- 5: Append (\mathbf{x}_t, y_t) to $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(\mathbf{x}_t, y_t)\}.$
- 6: end for
- 7: Determine the best optimizer found until $T: \mathbf{x}_{\text{best}} = \arg\min_{(\mathbf{x}, y) \in \mathcal{D}_T} y.$
- 8: return $\mathbf{x}_{\mathrm{best}}$

Bayesian Optimization Results with PI

Figure 5: Bayesian optimization results with PI criterion.

Bayesian Optimization Results with EI

Figure 6: Bayesian optimization results with El criterion.

Bayesian Optimization Results with GP-UCB

Figure 7: Bayesian optimization results with GP-UCB criterion.

Relationship to Multi-Armed Bandit Problem

- Each machine returns a reward $\hat{r}_a \sim p_{\theta_a}(r_a)$ where $a \in \{1, \dots, K\}$.
- It minimizes a cumulative regret $T\mu^* \sum_{t=1}^T \hat{r}_{a_t}$ where $\mu^* = \max_{a \in \{1, \dots, K\}} \mu_a$.
- Bayesian optimization can be considered as infinite bandits with dependent arms.

Relationship to Thompson Sampling

- Thompson sampling is usually applied in multi-armed bandit problems.
- ▶ For the case of a beta-Bernoulli bandit, Thompson sampling is defined as follows.

Algorithm 2 Thompson Sampling for a Beta-Bernoulli Bandit

- 1: for t = 1, 2, ..., T do
- 2: for $k = 1, \ldots, K$ do
- 3: Sample $\hat{\theta}_k \sim \text{beta}(\alpha_k, \beta_k)$.
- 4: end for
- 5: $x_t \leftarrow \arg \max_k \hat{\theta}_k$.
- 6: Apply x_t and observe r_t .

7:
$$(\alpha_{x_t}, \beta_{x_t}) \leftarrow (\alpha_{x_t} + r_t, \beta_{x_t} + 1 - r_t).$$

8: end for

After sampling the possibilities, it chooses a maximizer of those sampled values university to the possibilities.

- Current version: 0.5.3
- Supported Python version: 3.6, 3.7, 3.8, 3.9, 3.10
- Web page: https://bayeso.org
- GitHub repository: https://github.com/jungtaekkim/bayeso
- Documentation: https://bayeso.readthedocs.io
- License: MIT license

Applications of Bayesian Optimization

Molecule Design

[Korovina et al., 2020] K. Korovina, S. Xu, K. Kandasamy, W. Neiswanger, B. Póczos, J. Schneider, and E. P. Xing. ChemBO: Bayesian optimization opti

Protein Structure Design

University of

[[]Yang et al., 2022] Z. Yang, K. A. Milas, and A. D. White. Now what sequence? pre-trained ensembles for Bayesian optimization of protein sequences. Purchargh 2022. 39/55

Chemical Reaction Optimization

[Shields et al., 2021] B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, and A. G. Doyle. Bayesian restriction of the primization as a tool for chemical synthesis. Nature, 590:89–96, 2021. 40/55

• University of

Battery Lifetime Optimization

[[]Attia et al., 2020] P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. Korreger W. of Aykol, S. J. Harris, R. D. Braatz, S. Ermon, and W. C. Chueh. Closed-loop optimization of fast-charging protocols for batteries with machine leakong. Nature 21 578 (7795):397–402, 2020.

Automated Machine Learning

- Automated machine learning is a framework to automatically find an optimal machine learning model without human intervention [Guyon et al., 2015, Hutter et al., 2019].
- Using training and validation datasets, D_{train} and D_{valid}, the automated machine learning system finds the optimal algorithm A* and the optimal hyperparameters λ*:

$$\mathbf{A}^{*}, \boldsymbol{\lambda}^{*} = \operatorname{AutoML}(\mathcal{D}_{\operatorname{train}}, \mathcal{D}_{\operatorname{valid}}, \mathcal{A}, \Lambda),$$
(24)

42/55

where A is a search space for algorithm selection and Λ is a search space for hyperparameter optimization.

[[]Guyon et al., 2015] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Maci'a, B. Ray, M. Saeed, A. Statnikov, and Er Wegashi Design of the 2015 ChaLearn AutoML Challenge. In IJCNN, 2015.

[[]Hutter et al., 2019] F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods, systems, challenges. Springer Nature, 2019.

Automated Machine Learning

Pittsburgh 43/55

Automated Machine Learning

Figure 8: Our automated machine learning system for AutoML Challenge 2018.

Approaches that take the 3rd place in AutoML5 phase of AutoML Challenge [Kim et al., 2016] and the 2nd place in AutoML Challenge 2018 [Kim and Choi, 2018a] have been presented.

[[]Kim et al., 2016] J. Kim, J. Jeong, and S. Choi. AutoML Challenge: AutoML framework using random space partitioning optimizer. ICML Workshop on Automatic Machine Learning (AutoML), 2016.

[[]Kim and Choi, 2018a] J. Kim and S. Choi. Automated machine learning for soft voting in an ensemble of tree-based classifiers. ICML Workshop on Automatight Machine Learning (AutoML), 2018a.

Learning to Transfer Initializations for Bayesian Hyperparameter Optimization

It can measure the similarities between unseen dataset and historical datasets by learning to warm-start Bayesian hyperparameter optimization.

University of

[[]Kim et al., 2017] J. Kim, S. Kim, and S. Choi. Learning to transfer initializations for Bayesian hyperparameter optimization. NeurIPS Workshop of Bayesian Urgh Optimization (BayesOpt), 2017. 45/55

Combinatorial 3D Shape Generation via Sequential Assembly

- 3D shape generation via sequential assembly mimics a human assembly process, by allocating a budget of primitives given [Kim et al., 2020].
- We solve a sequential problem with Bayesian optimization-based framework of combinatorial 3D shape generation, composed of a set of geometric primitives.
- To determine the position of the next primitive, two evaluation functions regarding occupiability and stability are defined.
- Occupiability encourages us to follow a target shape and stability helps to create a physically-stable combination.
- A new combinatorial 3D shape dataset that consists of 14 classes and 406 instances is also introduced in this work.

[[]Kim et al., 2020] J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. NeurIPS Workshop on Machinegh Learning for Engineering Modeling, Simulation, and Design (ML4Eng), 2020. 46/55

Experimental Results

Experimental Results

▶ We apply our framework in optimizing specific explicit functions.

Figure 10: Quantitative results on maximizing explicit evaluation functions.

Combinatorial 3D Shape Dataset

Figure 11: Selected examples from our dataset.

Related Work on Combinatorial and Sequential Assembly

- By following the problem formulation of combinatorial 3D construction and sequential assembly, Thompson et al. [2020] suggest a deep generative model for graphs to construct a 3D object with LEGO bricks.
- Chung et al. [2021] propose a deep reinforcement learning-based method to assemble 2 × 4 LEGO bricks, where the incomplete information of a target object, i.e., 2D images, is given to construct the target object.
- Unlike [Kim et al., 2020, Thompson et al., 2020], Lee et al. [2022] solve a 2D jigsaw puzzle with randomly-partitioned fragments via an approach to assembling the fragments sequentially.

[[]Kim et al., 2020] J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. NeurIPS Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), 2020.

[[]Thompson et al., 2020] R. Thompson, G. Elahe, T. DeVries, and G. W. Taylor. Building LEGO using deep generative models of graphs. In NeurIPS Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), 2020.

[[]Chung et al., 2021] H. Chung*, J. Kim*, B. Knyazev, J. Lee, G. W. Taylor, J. Park, and M. Cho. Brick-by-Brick: Combinatorial construction with environment learning. In NeurIPS, 2021.

[[]Lee et al., 2022] J. Lee*, J. Kim*, H. Chung, J. Park, and M. Cho. Learning to assemble geometric shapes. In IJCAI, 2022.

- Bayesian optimization is a powerful method to optimize a black-box function.
- Instead of methods based on heuristic or prior knowledge, it provides a structured approach to finding an optimal solution.
- Bayesian optimization is expanding into various real-world applications.
- ▶ The potential of Bayesian optimization has not been fully exploited yet :)

Thank you!

References I

- P. M. Attia, A. Grover, N. Jin, K. A. Severson, T. M. Markov, Y.-H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, and W. C. Chueh. Closed-loop optimization of fast-charging protocols for batteries with machine learning. *Nature*, 578(7795): 397–402, 2020.
- J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13:281-305, 2012.
- J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 24, pages 2546–2554, Granada, Spain, 2011.
- E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.
- H. Chung, J. Kim, B. Knyazev, J. Lee, G. W. Taylor, J. Park, and M. Cho. Brick-by-Brick: Combinatorial construction with deep reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, pages 5745–5757, Virtual, 2021.
- P. I. Frazier, W. B. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21(4):599-613, 2009.
- R. Garnett. Bayesian Optimization. Cambridge University Press, 2023.
- I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macià, B. Ray, M. Saeed, A. Statnikov, and E. Viegas. Design of the 2015 ChaLearn AutoML Challenge. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), pages 1–8, Killarney, Ireland, 2015.
- N. Hansen. The CMA evolution strategy: a comparing review. Towards a new evolutionary computation, pages 75-102, 2006.
- N. Hansen. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.
- N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), pages 1689–1696, Portland, Oregon, USA, 2010.
- P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. Journal of Machine Learning Research, 13:1809–1837, 2012.
- J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient global optimization of black-box functions. In Advances in Neural Information Processing Systems (NeurIPS), volume 27, pages 918–926, Montreal, Quebec, Canada, 2014.
- M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 327–336, Barcelona, Spain, 2011.
- F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proceedings of the Interspiry of Conference on Learning and Intelligent Optimization (LION), pages 507–523, Rome, Italy, 2011. 53/55

References II

- F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods, systems, challenges. Springer Nature, 2019.
- D. R. Jones and J. R. R. A. Martins. The DIRECT algorithm: 25 years later. Journal of Global Optimization, 79(3):521-566, 2021.
- D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.
- J. Kim and S. Choi. BayesO: A Bayesian optimization framework in Python. https://bayeso.org, 2017.
- J. Kim and S. Choi. Automated machine learning for soft voting in an ensemble of tree-based classifiers. In International Conference on Machine Learning Workshop on Automatic Machine Learning (AutoML), Stockholm, Sweden, 2018a.
- J. Kim and S. Choi. Clustering-guided GP-UCB for Bayesian optimization. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 2461–2465, Calgary, Alberta, Canada, 2018b.
- J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 675–690, Virtual, 2020.
- J. Kim and S. Choi. On uncertainty estimation by tree-based surrogate models in sequential model-based optimization. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 4359–4375, Virtual, 2022.
- J. Kim, J. Jeong, and S. Choi. AutoML Challenge: AutoML framework using random space partitioning optimizer. In International Conference on Machine Learning Workshop on Automatic Machine Learning (AutoML), New York, New York, USA, 2016.
- J. Kim, S. Kim, and S. Choi. Learning to transfer initializations for Bayesian hyperparameter optimization. In Neural Information Processing Systems Workshop on Bayesian Optimization (BayesOpt), Long Beach, California, USA, 2017.
- J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. In Neural Information Processing Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.
- G. Kochanski, D. Golovin, J. Karro, B. Solnik, S. Moitra, and D. Sculley. Bayesian optimization for a better dessert. In Neural Information Processing Systems Workshop on Bayesian Optimization (BayesOpt), Long Beach, California, USA, 2017.
- K. Korovina, S. Xu, K. Kandasamy, W. Neiswanger, B. Póczos, J. Schneider, and E. P. Xing. ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 3395:3403; aresity of Virtual, 2020.

References III

- H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1): 97–106, 1964.
- J. Lee, J. Kim, H. Chung, J. Park, and M. Cho. Learning to assemble geometric shapes. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1046–1052, Vienna, Austria, 2022.
- R. Martinez-Cantin, K. Tee, and M. McCourt. Practical Bayesian optimization in the presence of outliers. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1722–1731, Lanzarote, Canary Islands, Spain, 2018.
- J. Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference, pages 400-404, Novosibirsk, Russia, 1975.
- J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117-129, 1978.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
- B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, and A. G. Doyle. Bayesian reaction optimization as a tool for chemical synthesis. *Nature*, 590(7844):89–96, 2021.
- J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian neural networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 29, pages 4134–4142, Barcelona, Spain, 2016.
- N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In Proceedings of the International Conference on Machine Learning (ICML), pages 1015–1022, Haifa, Israel, 2010.
- R. Thompson, G. Elahe, T. DeVries, and G. W. Taylor. Building LEGO using deep generative models of graphs. In Neural Information Processing Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.
- L. C. Tiao, A. Klein, M. Seeger, E. V. Bonilla, C. Archambeau, and F. Ramos. BORE: Bayesian optimization by density-ratio estimation. In Proceedings of the International Conference on Machine Learning (ICML), pages 10289–10300, Virtual, 2021.
- R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In *Proceedings of the NeurIPS Competition and Demonstration Track*, pages 3–26, Virtual, 2020.

Pittsburgh 55/55

Z. Yang, K. A. Milas, and A. D. White. Now what sequence? pre-trained ensembles for Bayesian optimization of protein sequences. bioRxiv, 20