
1/44

Bayesian Optimization and Its Applications

Jungtaek Kim (jtkim@postech.ac.kr)

Department of Computer Science and Engineering, POSTECH,
77 Cheongam-ro, Nam-gu, Pohang 37673,

Gyeongsangbuk-do, Republic of Korea
https://jungtaek.github.io

April 22, 2021

jtkim@postech.ac.kr
https://jungtaek.github.io

2/44

Table of Contents

Bayesian Optimization
Mathematical Optimization
Bayesian Optimization
Surrogate Models
Gaussian Process Regression
Acquisition Functions
Relationship to Other Algorithms
BayesO
Bayesian Optimization on Structured Search Space

Applications of Bayesian Optimization
Automated Machine Learning
Combinatorial 3D Shape Generation

3/44

Bayesian Optimization

4/44

Mathematical Optimization

x1

−4 −2
0

2
4

6
8

10

x 2

0
2

4
6

8
10

12
14

f
(x

)

50

100

150

200

250

300

50

100

150

200

250

Figure 1: Branin function.

I Given an objective f : A → R where
A is some set, it seeks minimum or
maximum of the target function:

x∗ = arg min f(x), (1)

or
x∗ = arg max f(x). (2)

5/44

Mathematical Optimization

I To optimize an objective, we can select one of such strategies:

I Gradient descent,

I Convex programming,

I Metaheuristic.

I Each strategy has the advantage in the corresponding conditions of optimization
problem.

I However, under certain circumstances, Bayesian optimization is the most effective
method to solve some class of mathematical optimization problem.

6/44

Target Functions in Bayesian Optimization

I Usually, an expensive black-box function f ,
which has unknown functional forms or local geometric features such as saddle
points, global optima, and local optima, is optimized,
where a d-dimensional search space X ⊂ Rd is convex and compact.

I Moreover, we assume that the continuity of f can be unknown,
and high-dimensional and mixed-variable domain space can be given.

7/44

Bayesian Optimization

I A powerful strategy for finding the extrema of objective function that is expensive
to evaluate,

I where one does not have a closed-form expression for the objective function,

I but where one can obtain observations at samples to evaluate.

I Since we do not know a target function, it optimizes an acquisition function,
instead of the target function.

I An acquisition function is defined with the outputs of Bayesian regression model.

8/44

Bayesian Optimization

Algorithm 1 Bayesian Optimization

Input: Initial data D1:k = {(xi, yi)}ki=1 and a time budget T .
Output: The best candidate of global optimum x†.
1: for t = 1, 2, . . . , T do
2: Predict a function f̂(x | D1:k+t−1) considered as an objective function.
3: Find a query xk+t that maximizes an acquisition function:

xk+t = arg max
x

a(x | f̂ ,D1:k+t−1). (3)

4: Evaluate a true objective function, yk+t = f(xk+t) + εk+t.
5: Update historical data:

D1:k+t ← D1:k+t−1 + {(xt, yt)}. (4)

6: end for
7: return the best query x†: (x†, y†) = arg min(x,y)∈D1:k+T

y.

9/44

Surrogate Models

I A surrogate model estimates a true objective function, where historical
observations are given.

I To balance exploration and exploitation, it predicts a function estimate and its
uncertainty estimate over any query x ∈ X .

I Gaussian process regression, random forests regression [Hutter et al., 2011], and
Bayesian neural network [Springenberg et al., 2016] have been used.

10/44

Gaussian Process

I A collection of random variables, any finite number of which have a joint Gaussian
distribution [Rasmussen and Williams, 2006].

I Generally, Gaussian process (GP) is defined as

f ∼ GP(m(x), k(x,x′)), (5)

where

m(x) = E[f(x)], (6)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (7)

11/44

Gaussian Process Regression

−3 −2 −1 0 1 2 3

x

−1

0

1

2

y

(a) From prior function dist.

−3 −2 −1 0 1 2 3

x

−1

0

1

2

3

y
(b) From posterior function dist.

−3 −2 −1 0 1 2 3

x

−2

−1

0

1

2

3

4

y

(c) Predictive dist.

Figure 2: Gaussian process regression for a function cos(x) + 2 with observation noise.

12/44

Gaussian Process Regression

I One of popular covariance functions, the squared-exponential covariance function
in one dimension is defined as

k
(
x, x′

)
= σ2f exp

(
− 1

2l2
(
x− x′

)2)
+ σ2nδxx′ , (8)

where σf is a signal level, l is a length scale and σn is a noise level [Rasmussen
and Williams, 2006].

I Posterior mean function µ(·) and covariance function Σ(·):

µ(X∗) = K(X∗,X)(K(X,X) + σ2nI)−1y, (9)

Σ(X∗) = K(X∗,X∗)−K(X∗,X)(K(X,X) + σ2nI)−1K(X,X∗). (10)

13/44

Gaussian Process Regression

I If non-zero mean prior is given, posterior mean and covariance functions:

µ(X∗) = K(X∗,X)(K(X,X) + σ2nI)
−1(y − µp(X)) + µp(X), (11)

Σ(X∗) = K(X∗,X∗) +K(X∗,X)(K(X,X) + σ2nI)
−1K(X,X∗), (12)

where µp(·) is a prior mean function.

14/44

Acquisition Functions

I An acquisition function acquires the next point to evaluate for an expensive
black-box function f .

I Traditionally, the probability of improvement (PI) [Kushner, 1964], the expected
improvement (EI) [Močkus et al., 1978], and GP upper confidence bound
(GP-UCB) [Srinivas et al., 2010] have been used.

I Several functions such as knowledge gradient [Frazier et al., 2009], entropy
search [Hennig and Schuler, 2012] and a combination of existing functions [Kim
and Choi, 2018] have been proposed.

15/44

Popular Acquisition Functions (Minimization Case)

I Suppose that (x†, y†) = arg min(x,y)∈D y,

µ(x) := µ(x | D,λ), (13)

σ(x) := σ(x | D,λ), (14)

z =

{
f(x†)−µ(x)

σ(x) , if σ(x) > 0

0, if σ(x) = 0
. (15)

I PI criterion [Kushner, 1964] is defined as

aPI(x | D,λ) = Φ(z), (16)

where Φ is a cumulative distribution function of standard normal distribution.

16/44

Popular Acquisition Functions (Minimization Case)

I EI criterion [Močkus et al., 1978] is defined as

aEI(x | D,λ) =

{
(f(x†)− µ(x))Φ(z) + σ(x)φ(z), if σ(x) > 0
0, if σ(x) = 0

, (17)

where φ is a probability density function of standard normal distribution.

I GP-UCB criterion [Srinivas et al., 2010] is defined as

aUCB(x | D,λ) = −µ(x) + βσ(x), (18)

where β is a trade-off hyperparameter.

17/44

Acquisition Function Optimization

I We should find a global optimum of acquisition function.

I But, in practice, either global optimizer or local optimizer is used.

I Multi-started local optimizers can be a good option as a substitute of global
optimum.

I Analyses on these selections are provided in [Kim and Choi, 2020].

18/44

On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]

19/44

On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]

20/44

Synthetic Example

−5.0 −2.5 0.0 2.5 5.0

−10

0

10

20

y

−5.0 −2.5 0.0 2.5 5.0

x

0.0

2.5

ac
q.

(a) Iteration 1

−5.0 −2.5 0.0 2.5 5.0

0

10

20

y

−5.0 −2.5 0.0 2.5 5.0

x

0.0

0.5

ac
q.

(b) Iteration 2

−5.0 −2.5 0.0 2.5 5.0

0

10

20

y

−5.0 −2.5 0.0 2.5 5.0

x

0.000

0.025

ac
q.

(c) Iteration 3

−5.0 −2.5 0.0 2.5 5.0

0

10

20

y

−5.0 −2.5 0.0 2.5 5.0

x

0.0

0.1

ac
q.

(d) Iteration 4

Figure 3: y = 4.0 cos(x) + 0.1x+ 2.0 sin(x) + 0.4(x− 0.5)2. EI is used to optimize.

21/44

Relationship to Multi-Armed Bandit Problem

I Each machine returns a reward r̂a ∼ pθa(ra) where a ∈ {1, . . . ,K}.

I It minimizes a cumulative regret Tµ∗ −∑T
t=1 r̂at where µ∗ = maxa∈{1,...,K} µa.

I Bayesian optimization can be considered as infinite bandits with dependent arms.

22/44

Relationship to Thompson Sampling

I Thompson sampling is usually applied in multi-armed bandit problems.

I For the case of a beta-Bernoulli bandit, Thompson sampling is defined as

Algorithm 2 Thompson Sampling for a Beta-Bernoulli Bandit

1: for t = 1, 2, . . . , T do
2: for k = 1, . . . ,K do
3: Sample θ̂k ∼ beta(αk, βk).
4: end for
5: xt ← arg maxk θ̂k.
6: Apply xt and observe rt.
7: (αxt , βxt)← (αxt + rt, βxt + 1− rt).
8: end for

I After sampling the possibilities, it chooses a maximizer of those sampled values.

23/44

Relationship to Neural Processes

I Neural processes model distributions over functions, similar to Gaussian
processes [Garnelo et al., 2018a,b, Lee et al., 2020].

I It might be used as a surrogate model in meta-learning manner.

24/44

BayesO [Kim and Choi, 2017]

I Current version: 0.5.0

I Supported Python version: 3.6, 3.7, 3.8, 3.9 (tested by Travis CI)

I Web page: https://bayeso.org

I GitHub repo: https://github.com/jungtaekkim/bayeso

I Documentation: https://bayeso.readthedocs.io

I License: MIT license

https://bayeso.org
https://github.com/jungtaekkim/bayeso
https://bayeso.readthedocs.io

25/44

Comparison to Related Software in Python

Input Surrogate Native GPU
Vector Set GP TP RF Implement Support

SMAC [Hutter et al., 2011] X X
BayesOpt [Martinez-Cantin, 2014] X X
GPyOpt [The GPyOpt authors, 2016] X X X
GPFlowOpt [Knudde et al., 2017] X X X
BoTorch [Balandat et al., 2020] X X X
BayesO [Kim and Choi, 2017] X X X X X

Table 1: Comparison to related software in Python. GP, TP, and RF stand for Gaussian process
regression, Student-t process regression, and random forests. Native implement indicates an
implementation with Python and the minimum extra packages (including NumPy and SciPy).

26/44

Bayesian Optimization on Structured Search Space

I Graph structure [Cui and Yang, 2018, Oh et al., 2019]

I Set structure [Buathong et al., 2020, Kim et al., 2021]

I Combinatorial structure [Baptista and Poloczek, 2018, Oh et al., 2019]

I Topological structure [Shiraishi et al., 2020]

27/44

Combinatorial Bayesian Optimization using the Graph Cartesian
Product [Oh et al., 2019]

28/44

Topological Bayesian Optimization with Persistence
Diagrams [Shiraishi et al., 2020]

29/44

Bayesian Optimization with Approximate Set Kernels [Kim et al.,
2021]

I Denote that a set of m vectors is X = {x1, . . . ,xm}.

I If we define a set kernel

kset(X
(1),X(2)) =

1

|X(1)||X(2)|

|X(1)|∑
i=1

|X(2)|∑
j=1

k(x
(1)
i ,x

(2)
j), (19)

a stochastic process can be directly employed.

I To reduce the computational complexity O(n2m2d), we propose an approximation
of the set kernel:

k̃set(X
(1),X(2);π,w, L) = kset(X̃

(1), X̃(2)), (20)

where π is a permutation function, w ∈ Rd is a vector for random scalar
projection, and L is the number of subsamples.

30/44

Applications of Bayesian Optimization

31/44

Automated Machine Learning

Configuration
Initialization

Dataset
Pre-processing

Configuration
Space Selection

Configuration
Optimization

Parameter
Learning

Inference and
Prediction

Performance
Evaluation

Resource Allocation

Resource Allocation

32/44

Automated Machine Learning
I Data pre-processing

I Configuration space selection

I Specify a searching space X (e.g., a Cartesian space of kernel type, penalty
parameter, kernel coefficient, and degree)

I Configuration initialization

I Random initialization, Low discrepancy initialization

I Learn to initialize [Kim et al., 2017]

I Configuration optimization

I Random search [Bergstra and Bengio, 2012], Grid search

I Bayesian optimization

I Neural architecture search [Zoph and Le, 2017]

I Resource allocation

33/44

Automated Machine Learning

I It automatically finds the optimal machine learning model without human
intervention.

I Feature transformation, algorithm selection, and hyperparameter optimization are
usually included.

I Given a training dataset Dtrain and a validation dataset Dval, the optimal
hyperparameter vector λ∗ for an automated machine learning system is found:

λ∗ = AutoML(Dtrain,Dval,Λ), (21)

where AutoML is an automated machine learning system.

34/44

AutoML-Zero: Evolving Machine Learning Algorithms From
Scratch [Real et al., 2020]

35/44

Combinatorial 3D Shape Generation via Sequential
Assembly [Kim et al., 2020]

I 3D shape generation via sequential assembly mimics a human assembling process,
by allocating a budget of primitives given.

I We solve a sequential problem with Bayesian optimization-based framework of
combinatorial 3D shape generation

I It creates a 3D shape with a set of geometric primitives.

I We also introduce a new combinatorial 3D shape dataset that consists of 14
classes and 406 instances.

36/44

Sequential Assembly with Unit Primitives

I Instead of employing other 3D representations such as point clouds, triangular
meshes, and voxels, we create a sequence of unit primitives such as 2 × 4 LEGO
bricks.

Figure 4: 2 × 4 LEGO brick.

I This 2 × 4 LEGO bricks make our problem more combinatorial and more
complex, compared to other primitives.

37/44

Combinatorial 3D Shape Generation

I To determine the position of the next primitive, we define two evaluation
functions regarding occupiability and stability.

I Occupiability encourages us to follow a target shape and stability helps to create a
physically stable combination.

I We determine the position of the next primitive via Bayesian optimization.

I To avoid a suboptimal sequence, our framework includes a rollback step.

38/44

Experimental Results

1 step 20 steps 40 steps

60 steps 80 steps 118 steps

Figure 5: Generated assembling sequence that creates a car shape with 118 unit primitives.

39/44

Experimental Results

I We apply our framework in optimizing specific explicit functions.

0 5 10 15 20 25 30
#Primitives

0

5

10

15

20

25

30

H
ei

gh
t

Oracle

Random

Random w/ Eval.

BO

(a) Height

0 5 10 15 20 25 30
#Primitives

0

20

40

60

80

100

W
id

th

Oracle

Random

Random w/ Eval.

BO

(b) Width

0 5 10 15 20 25 30
#Primitives

0

20

40

60

80

100

D
ep

th

Oracle

Random

Random w/ Eval.

BO

(c) Depth

0 5 10 15 20 25 30
#Primitives

0

50

100

150

200

250

#
C

on
n

ec
te

d
st

u
d

s

Oracle

Random

Random w/ Eval.

BO

(d) #Conn. studs

Figure 6: Quantitative results on maximizing explicit evaluation functions.

40/44

Combinatorial 3D Shape Dataset

Parallel Perpendicular Bar Line Plate Wall

Cuboid Pyramid Bench Sofa Cup Hollow

Table Car

Figure 7: Selected examples from our dataset.

41/44

Takeaway

I Bayesian optimization is a powerful method to optimize a black-box function.

I Instead of methods based on heuristic or prior knowledge, it provides a structured
approach to find an optimal solution.

I Bayesian optimization is expanding into various real-world applications.

42/44

Thank you.

43/44

References I

M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian
optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, Virtual, 2020.

R. Baptista and M. Poloczek. Bayesian optimization of combinatorial structures. In Proceedings of the International Conference on Machine Learning
(ICML), pages 462–471, Stockholm, Sweden, 2018.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13:281–305, 2012.

P. Buathong, D. Ginsbourger, and T. Krityakierne. Kernels over sets of finite sets using RKHS embeddings, with application to Bayesian
(combinatorial) optimization. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages
2731–2741, Virtual, 2020.

J. Cui and B. Yang. Graph Bayesian optimization: Algorithms, evaluations and applications. arXiv preprint arXiv:1805.01157, 2018.

P. I. Frazier, W. B. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21(4):
599–613, 2009.

M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. W. Teh, D. J. Rezende, and S. M. A. Eslami. Conditional
neural processes. In Proceedings of the International Conference on Machine Learning (ICML), pages 1690–1699, Stockholm, Sweden, 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and Y. W. Teh. Neural processes. arXiv preprint arXiv:1807.01622,
2018b.

P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. Journal of Machine Learning Research, 13:1809–1837, 2012.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proceedings of the
International Conference on Learning and Intelligent Optimization (LION), pages 507–523, Rome, Italy, 2011.

J. Kim and S. Choi. BayesO: A Bayesian optimization framework in Python. https://bayeso.org, 2017.

J. Kim and S. Choi. Clustering-guided GP-UCB for Bayesian optimization. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 2461–2465, Calgary, Alberta, Canada, 2018.

J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 675–690, Virtual, 2020.

J. Kim, S. Kim, and S. Choi. Learning to warm-start Bayesian hyperparameter optimization. arXiv preprint arXiv:1710.06219, 2017.

https://bayeso.org

44/44

References II
J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. In Neural Information Processing

Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

J. Kim, M. McCourt, T. You, S. Kim, and S. Choi. Bayesian optimization with approximate set kernels. Machine Learning, 2021.

N. Knudde, J. van der Herten, T. Dhaene, and I. Couckuyt. GPflowOpt: A Bayesian optimization library using TensorFlow. arXiv preprint
arXiv:1711.03845, 2017.

H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering,
86(1):97–106, 1964.

J. Lee, Y. Lee, J. Kim, E. Yang, S. J. Hwang, and Y. W. Teh. Bootstrapping neural processes. In Advances in Neural Information Processing Systems
(NeurIPS), pages 6606–6615, Virtual, 2020.

R. Martinez-Cantin. BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits. Journal of Machine
Learning Research, 15:3735–3739, 2014.

J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117–129,
1978.

C. Oh, J. Tomczak, E. Gavves, and M. Welling. Combinatorial Bayesian optimization using the graph cartesian product. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32, pages 2914–2924, Vancouver, British Columbia, Canada, 2019.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

E. Real, C. Liang, D. R. So, and Q. V. Le. AutoML-Zero: evolving machine learning algorithms from scratch. In Proceedings of the International
Conference on Machine Learning (ICML), pages 8007–8019, Virtual, 2020.

T. Shiraishi, T. Le, H. Kashima, and M. Yamada. Topological Bayesian optimization with persistence diagrams. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), pages 1483–1490, Virtual, 2020.

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 29, pages 4134–4142, Barcelona, Spain, 2016.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In
Proceedings of the International Conference on Machine Learning (ICML), pages 1015–1022, Haifa, Israel, 2010.

The GPyOpt authors. GPyOpt: A Bayesian optimization framework in Python. https://github.com/SheffieldML/GPyOpt, 2016.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings of the International Conference on Learning
Representations (ICLR), Toulon, France, 2017.

https://github.com/SheffieldML/GPyOpt

	Bayesian Optimization
	Mathematical Optimization
	Bayesian Optimization
	Surrogate Models
	Gaussian Process Regression
	Acquisition Functions
	Relationship to Other Algorithms
	BayesO
	Bayesian Optimization on Structured Search Space

	Applications of Bayesian Optimization
	Automated Machine Learning
	Combinatorial 3D Shape Generation

	References

