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Bayesian Optimization
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Mathematical Optimization

> Given an objective f : A — R where

250

0 A is some set, it seeks minimum or
- maximum of the target function:
100 * .
' X' —argmin f(x), (1)
or
x* = argmax f(x). (2)
Figure 1: Branin function.
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Mathematical Optimization

> To optimize an objective, we can select one of such strategies:
> Gradient descent,
» Convex programming,

» Metaheuristic.

» Each strategy has the advantage in the corresponding conditions of optimization
problem.

» However, under certain circumstances, Bayesian optimization is the most effective
method to solve some class of mathematical optimization problem.
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Target Functions in Bayesian Optimization

» Usually, an expensive black-box function f,
which has unknown functional forms or local geometric features such as saddle
points, global optima, and local optima, is optimized,
where a d-dimensional search space X C R? is convex and compact.

» Moreover, we assume that the continuity of f can be unknown,
and high-dimensional and mixed-variable domain space can be given.
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Bayesian Optimization

> A powerful strategy for finding the extrema of objective function that is expensive
to evaluate,

» where one does not have a closed-form expression for the objective function,

» but where one can obtain observations at samples to evaluate.

» Since we do not know a target function, it optimizes an acquisition function,
instead of the target function.

» An acquisition function is defined with the outputs of Bayesian regression model.
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Bayesian Optimization

Algorithm 1 Bayesian Optimization

Input: Initial data Dy, = {(x;,%:)}%_; and a time budget 7.
Output: The best candidate of global optimum x.

1: fort=1,2,...,7 do

2:  Predict a function f(x | D1.k++—1) considered as an objective function.
3:  Find a query xj4: that maximizes an acquisition function:

Xt = argmax a(x | f, Dygse—1)- (3)
xX
4:  Evaluate a true objective function, yg4+t = f(Xgt+t) + €xtt-
5. Update historical data:
D1kt < Drakge—1 + {(xe,41) }- (4)
6: end for

~

return the best query x': (xT,y!) = arg Wil y)epy.pr Y-
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Surrogate Models

> A surrogate model estimates a true objective function, where historical
observations are given.

» To balance exploration and exploitation, it predicts a function estimate and its
uncertainty estimate over any query x € X.

» Gaussian process regression, random forests regression [Hutter et al., 2011], and
Bayesian neural network [Springenberg et al., 2016] have been used.
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Gaussian Process

> A collection of random variables, any finite number of which have a joint Gaussian
distribution [Rasmussen and Williams, 2006].

» Generally, Gaussian process (GP) is defined as

[~ GP(m(x), k(x,x)), (5)

where
m(x) = E[f(x)], (6
k(x,x') = E[(f(x) — m(x))(f(x) = m(x))] (7
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Gaussian Process Regression

(a) From prior function dist.  (b) From posterior function dist. (c) Predictive dist.

Figure 2: Gaussian process regression for a function cos(x) + 2 with observation noise.
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Gaussian Process Regression

» One of popular covariance functions, the squared-exponential covariance function
in one dimension is defined as
1

b (o') = afexp (=g (o= )" ) + 020 ©)

where o is a signal level, [ is a length scale and o, is a noise level [Rasmussen
and Williams, 2006].

» Posterior mean function p(-) and covariance function X(-):

p(X*) = K(X*, X)(K(X,X) +02I) "y, (9)
N(X*) = K(X*, X*) — K(X*, X)(K(X,X) + 02I) ' K(X, X*). (10)

12/44



Gaussian Process Regression

» If non-zero mean prior is given, posterior mean and covariance functions:

u(X*) = K (X5 X)(K (X, X) + opD) 7y — (X)) + p1p(X), (11)
R(X*) = K(X*, X*) + K(X*, X)(K(X,X) + o2I) ' K(X,X*),  (12)

where fi,(+) is a prior mean function.
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Acquisition Functions

» An acquisition function acquires the next point to evaluate for an expensive
black-box function f.

» Traditionally, the probability of improvement (Pl) [Kushner, 1964], the expected
improvement (EI) [Motkus et al., 1978], and GP upper confidence bound
(GP-UCB) [Srinivas et al., 2010] have been used.

» Several functions such as knowledge gradient [Frazier et al., 2009], entropy
search [Hennig and Schuler, 2012] and a combination of existing functions [Kim
and Choi, 2018] have been proposed.
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Popular Acquisition Functions (Minimization Case)

> Suppose that (xf,y) = arg Min(y yep Y,

ﬂ(x) u(x| D, A), (13)
o(x):=o(x|D,A), (14)
{ "f)(xgx L ifo(x) >0 15)

if o(x) =0

» Pl criterion [Kushner, 1964] is defined as
ap1(x|D,X) = ®(z2), (16)
where ® is a cumulative distribution function of standard normal distribution.
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Popular Acquisition Functions (Minimization Case)

» El criterion [Mo&kus et al., 1978] is defined as

x) — p(x z o(x)o(z if o(x
m(xm,A)Z{ é{( ) = 1(x))(2) + 7(x)6(2), i nggig o

where ¢ is a probability density function of standard normal distribution.
» GP-UCB criterion [Srinivas et al., 2010] is defined as
aucs (x| D, A) = —pu(x) + fo(x), (18)

where (3 is a trade-off hyperparameter.
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Acquisition Function Optimization

> We should find a global optimum of acquisition function.
» But, in practice, either global optimizer or local optimizer is used.

» Multi-started local optimizers can be a good option as a substitute of global
optimum.

» Analyses on these selections are provided in [Kim and Choi, 2020].
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On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]

Theorem 1. Given ¢, € [0,1) and €, €1,€e2 > 0, the regret difference for a local
optimizer Xy at round t, |ry g — 1| is less than € with a probability at least
1—6;:

P(|re,g —rea| <e) >=1—4, (10)
where §; = %(l—ﬂg)-}- %, €1 = €1€2, Y = MaXy, x,ex ||Xi —X;||2 is the size of X,
By s the probability that a local optimizer of the acquisition function collapses
with its global optimizer, and M is the Lipschitz constant explained in Lemma 8.
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On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]

Theorem 2. Given 6, € [0,1) and €, €2,€3 > 0, a regret difference for a multi-
started local optimizer X; ,, determined by starting from N initial points at round
t, is less than €, with a probability at least 1 — §,,:

]P( |Tt,g - Tt,ml < 6m) >1- 5ma (11)

where 6, = L (1— ﬂg)N + %, €m = €2€3, Y = MaXy, x;ex ||Xi — Xjl2 is the
size of X, By is the probability that a local optimizer of the acquisition function
collapses with its global optimizer, and M is the Lipschitz constant explained in

Lemma 8.
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Synthetic Example

g “A
® 0.000 4
5.0 =25 25 5

(a) lteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 3: y = 4.0 cos(z) + 0.1z + 2.0sin(z) + 0.4(x — 0.5). El is used to optimize.




Relationship to Multi-Armed Bandit Problem

» Each machine returns a reward 7, ~ pg,(rs) where a € {1,..., K}.
> |t minimizes a cumulative regret T'y* — 25:1 Ta;, Where p* = maxgc(1, . Kk} Ha-
» Bayesian optimization can be considered as infinite bandits with dependent arms.
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Relationship to Thompson Sampling

» Thompson sampling is usually applied in multi-armed bandit problems.

» For the case of a beta-Bernoulli bandit, Thompson sampling is defined as

Algorithm 2 Thompson Sampling for a Beta-Bernoulli Bandit
1: fort=1,2,...,7T do
22 fork=1,...,K do
3: Sample 0, ~ beta(ag, k).
4:  end for
5. ay « argmaxy, 0.
6
7
8

Apply x; and observe ;.

: (O‘xt,ﬂxt) A (axt + 7, ﬁl't +1-— rt)'
- end for

> After sampling the possibilities, it chooses a maximizer of those sampled values.
POSTECH
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Relationship to Neural Processes

O
sooe @& TE-

Inference

Ed

(a) Graphical model (b) Computational diagram

Figure 1. Neural process model. (a) Graphical model of a neural process. z and y correspond to the data where y = f(z). C and T’
are the number of context points and target points respectively and z is the global latent variable. A grey background indicates that the
variable is observed. (b) Diagram of our neural process implementation. Variables in circles correspond to the variables of the graphical
model in (a), variables in square boxes to the intermediate representations of NPs and unbound, bold letters to the following computation
modules: h - encoder, a - aggregator and g - decoder. In our implementation k and g correspond to neural networks and a to the mean
function. The continuous lines depict the generative process, the dotted lines the inference.

» Neural processes model distributions over functions, similar to Gaussian
processes [Garnelo et al., 2018a,b, Lee et al., 2020].

P It might be used as a surrogate model in meta-learning manner.
rosTecH
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BayesO [Kim and Choi, 2017]

BayesO

» Current version: 0.5.0

v

Supported Python version: 3.6, 3.7, 3.8, 3.9 (tested by Travis Cl)
> Web page: https://bayeso.org
» GitHub repo: https://github.com/jungtaekkim/bayeso

» Documentation: https://bayeso.readthedocs.io

v

License: MIT license POSTECH
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Comparison to Related Software in Python

Input Surrogate Native GPU

Vector Set GP TP RF Implement Support
SMAC [Hutter et al., 2011] v v
BayesOpt [Martinez-Cantin, 2014] v v
GPyOpt [The GPyOpt authors, 2016] v v v
GPFlowOpt [Knudde et al., 2017] v v v
BoTorch [Balandat et al., 2020] v v v
BayesO [Kim and Choi, 2017] v v o v v v

Table 1: Comparison to related software in Python. GP, TP, and RF stand for Gaussian process
regression, Student-t process regression, and random forests. Native implement indicates an
implementation with Python and the minimum extra packages (including NumPy and SciPy).
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Bayesian Optimization on Structured Search Space

» Graph structure [Cui and Yang, 2018, Oh et al., 2019]
» Set structure [Buathong et al., 2020, Kim et al., 2021]
» Combinatorial structure [Baptista and Poloczek, 2018, Oh et al., 2019]

» Topological structure [Shiraishi et al., 2020]
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Combinatorial Bayesian Optimization using the Graph Cartesian
Product [Oh et al., 2019]

16 . AdaDelta Constant
I
2¢ [ 0
H 1
640 RMSProp Adam Annealing

Figure 1: Combinatorial Graph: graph Cartesian product of sub-graphs G(C;)0G(C3)0G(Cs)
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Topological Bayesian Optimization with Persistence
Diagrams [Shiraishi et al., 2020]

*
B e @
*/p"
o, &
. £
O . &% ¢
r=0 r=0.2

Figure 1. Examples of S,.. We can observe that topological structures like
connected components and rings appear and disappear while increasing r.
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Bayesian Optimization with Approximate Set Kernels [Kim et al.,

2021]
» Denote that a set of m vectors is X = {x1,...,Xm}.

» If we define a set kernel

) XWX
et (XW, X)) = e S S k(Y X)), (19)

a stochastic process can be directly employed.

» To reduce the computational complexity O(n?m?d), we propose an approximation
of the set kernel:

];fiset (X(1)7 X(Q); ™ W, L) = kset (X(l)’ X(Q))a (20)
where 7 is a permutation function, w € R¢ is a vector for random scalar

projection, and L is the number of subsamples. rOsSTECH
29/44



Applications of Bayesian Optimization
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Automated Machine Learning

Dataset
Pre-processing

v
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:
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.
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31/44



Automated Machine Learning
» Data pre-processing
» Configuration space selection

> Specify a searching space X (e.g., a Cartesian space of kernel type, penalty
parameter, kernel coefficient, and degree)

» Configuration initialization
» Random initialization, Low discrepancy initialization
> Learn to initialize [Kim et al., 2017]
» Configuration optimization
» Random search [Bergstra and Bengio, 2012], Grid search
» Bayesian optimization

» Neural architecture search [Zoph and Le, 2017]

rPOSTECH

» Resource allocation 1248



Automated Machine Learning

> It automatically finds the optimal machine learning model without human
intervention.

» Feature transformation, algorithm selection, and hyperparameter optimization are
usually included.

» Given a training dataset Dy,in and a validation dataset Dy,;, the optimal
hyperparameter vector A* for an automated machine learning system is found:

A= AutOML(Dtraim Dvala A)7 (21)

where AutoML is an automated machine learning system.
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AutoML-Zero: Evolving Machine Learning Algorithms
Scratch [Real et al., 2020]

. Multiplicative Interactions
det ?ﬁ:‘clp:l;gh:s def Learn(): # sO=label (56D
83 = 81 / 82 # Scale predict. . ’
vi = gaussian(0.0, 0.01) ool et oot s Multiplicative Interactions
52 = -1.3 - (Flawed SGD)
v2 = sl * V0 # Gradient ! -
0.9, def Predict(): # vO=features vi = vi+ v2 # Update weights  Oradient Normalization e
s1 = dot(v0, v1) # Prediction -
linearModel - Random Weight Init p—
Flawed SGD Random Learning Rate  p——"
{ ) 9 / Best Evolved Algorithm
,
- od ReLU " jot Setup():
< / Better Hard-coded LR s4 = 1.8e-3 # Learning rate
K A HParams  Gradient Divided def Predict(): # vO=features
> Linear Model (SGD) by Input Norm v2 = v0 + vi # Add noise
] Loss Clipping v3 = v0 - v1 # Subtract noise
3 dot(m0, v2) # Linear
< dot(v3, v4) # Mult.interac.
p _ m0 = 52 * m2 # Copy weights
3 :‘,{‘"oeggg;’de' def Learn(): # sO=label
83 = 50 - s1 # Compute error
m0 = outer(v3, v0) # Approx grad
82 = norm(m0) # Approx grad norm
def Setup(): s5 = 83 / s2 # Normalized error
def Predict(): O30
X m0 = outer(vs, v2) # Grad
def Learn(): ml = ml + m0 # Update weights
m2 = m2 + ml # Accumulate wghts.
m0 = s4 * ml
Empty Algorithm # Generate noise
v1 = uniforn(2.4e-3, 0.67)
0.5
— - -
o ""10 Experiment Progress (Log # Algorithms Evaluated) 12

Figure 6: Progress of one evolution experiment on projected binary CIFAR-10. Callouts indicate some beneficial discoveries. We also
print the code for the initial, an intermediate, and the final algorithm. The last is explained in the flow diagram. It outperforms a simple
fully connected neural network on held-out test data and transfers to features 10x its size. Code notation is the same as in Figure 5. The
x-axis gap is due to infrequent recording due to disk throughput limitations.

From
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Combinatorial 3D Shape Generation via Sequential
Assembly [Kim et al., 2020]

» 3D shape generation via sequential assembly mimics a human assembling process,
by allocating a budget of primitives given.

» We solve a sequential problem with Bayesian optimization-based framework of
combinatorial 3D shape generation

P It creates a 3D shape with a set of geometric primitives.

» We also introduce a new combinatorial 3D shape dataset that consists of 14
classes and 406 instances.



Sequential Assembly with Unit Primitives

> Instead of employing other 3D representations such as point clouds, triangular
meshes, and voxels, we create a sequence of unit primitives such as 2 x 4 LEGO
bricks.

Figure 4: 2 x 4 LEGO brick.

» This 2 x 4 LEGO bricks make our problem more combinatorial and more

complex, compared to other primitives. P

36/44



Combinatorial 3D Shape Generation

» To determine the position of the next primitive, we define two evaluation
functions regarding occupiability and stability.

» Occupiability encourages us to follow a target shape and stability helps to create a
physically stable combination.

» \We determine the position of the next primitive via Bayesian optimization.

» To avoid a suboptimal sequence, our framework includes a rollback step.
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Experimental Results

- ®

1 step 20 steps 40 steps

e 5

60 steps 80 steps 118 steps

Figure 5: Generated assembling sequence that creates a car shape with 118 unit primitives.
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Experimental Results

» We apply our framework in optimizing specific explicit functions.

—— Oracle —— Oracle
e —— Random
vl 0; i
wal —— Random v/ Eval. —— Random w/ Exal. —— Random w/ Exal
2 — B0 — BO — BO
_ o 60
o o
10
0 p 0
[ 20 0 30 0 0

[N (O IOE ]
#Primitives #Primitives #Primitives #Primitives

(a) Height (b) Width (c) Depth (d) #Conn. studs

Figure 6: Quantitative results on maximizing explicit evaluation functions.
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Combinatorial 3D Shape Dataset

¥ r|----.-

Parallel Perpendicular Line Plate Wall
Cuboid Pyramid Bench Sofa Cup Hollow
Table

Figure 7: Selected examples from our dataset.
rosTeCH
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Takeaway

P> Bayesian optimization is a powerful method to optimize a black-box function.

» Instead of methods based on heuristic or prior knowledge, it provides a structured
approach to find an optimal solution.

P Bayesian optimization is expanding into various real-world applications.
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Thank you.
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