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Bayesian Optimization
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Mathematical Optimization
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Figure 1: Branin function.

I Given an objective f : A → R where
A is some set, it seeks minimum or
maximum of the target function:

x∗ = arg min f(x), (1)

or
x∗ = arg max f(x). (2)
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Mathematical Optimization

I To optimize an objective, we can select one of such strategies:

I Gradient descent,

I Convex programming,

I Metaheuristic.

I Each strategy has the advantage in the corresponding conditions of optimization
problem.

I However, under certain circumstances, Bayesian optimization is the most effective
method to solve some class of mathematical optimization problem.
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Target Functions in Bayesian Optimization

I Usually, an expensive black-box function f ,
which has unknown functional forms or local geometric features such as saddle
points, global optima, and local optima, is optimized,
where a d-dimensional search space X ⊂ Rd is convex and compact.

I Moreover, we assume that the continuity of f can be unknown,
and high-dimensional and mixed-variable domain space can be given.
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Bayesian Optimization

I A powerful strategy for finding the extrema of objective function that is expensive
to evaluate,

I where one does not have a closed-form expression for the objective function,

I but where one can obtain observations at samples to evaluate.

I Since we do not know a target function, it optimizes an acquisition function,
instead of the target function.

I An acquisition function is defined with the outputs of Bayesian regression model.
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Bayesian Optimization

Algorithm 1 Bayesian Optimization

Input: Initial data D1:k = {(xi, yi)}ki=1 and a time budget T .
Output: The best candidate of global optimum x†.
1: for t = 1, 2, . . . , T do
2: Predict a function f̂(x | D1:k+t−1) considered as an objective function.
3: Find a query xk+t that maximizes an acquisition function:

xk+t = arg max
x

a(x | f̂ ,D1:k+t−1). (3)

4: Evaluate a true objective function, yk+t = f(xk+t) + εk+t.
5: Update historical data:

D1:k+t ← D1:k+t−1 + {(xt, yt)}. (4)

6: end for
7: return the best query x†: (x†, y†) = arg min(x,y)∈D1:k+T

y.
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Surrogate Models

I A surrogate model estimates a true objective function, where historical
observations are given.

I To balance exploration and exploitation, it predicts a function estimate and its
uncertainty estimate over any query x ∈ X .

I Gaussian process regression, random forests regression [Hutter et al., 2011], and
Bayesian neural network [Springenberg et al., 2016] have been used.
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Gaussian Process

I A collection of random variables, any finite number of which have a joint Gaussian
distribution [Rasmussen and Williams, 2006].

I Generally, Gaussian process (GP) is defined as

f ∼ GP(m(x), k(x,x′)), (5)

where

m(x) = E[f(x)], (6)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (7)
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Gaussian Process Regression
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Figure 2: Gaussian process regression for a function cos(x) + 2 with observation noise.
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Gaussian Process Regression

I One of popular covariance functions, the squared-exponential covariance function
in one dimension is defined as

k
(
x, x′

)
= σ2f exp

(
− 1

2l2
(
x− x′

)2)
+ σ2nδxx′ , (8)

where σf is a signal level, l is a length scale and σn is a noise level [Rasmussen
and Williams, 2006].

I Posterior mean function µ(·) and covariance function Σ(·):

µ(X∗) = K(X∗,X)(K(X,X) + σ2nI)−1y, (9)

Σ(X∗) = K(X∗,X∗)−K(X∗,X)(K(X,X) + σ2nI)−1K(X,X∗). (10)
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Gaussian Process Regression

I If non-zero mean prior is given, posterior mean and covariance functions:

µ(X∗) = K(X∗,X)(K(X,X) + σ2nI)
−1(y − µp(X)) + µp(X), (11)

Σ(X∗) = K(X∗,X∗) +K(X∗,X)(K(X,X) + σ2nI)
−1K(X,X∗), (12)

where µp(·) is a prior mean function.
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Acquisition Functions

I An acquisition function acquires the next point to evaluate for an expensive
black-box function f .

I Traditionally, the probability of improvement (PI) [Kushner, 1964], the expected
improvement (EI) [Močkus et al., 1978], and GP upper confidence bound
(GP-UCB) [Srinivas et al., 2010] have been used.

I Several functions such as knowledge gradient [Frazier et al., 2009], entropy
search [Hennig and Schuler, 2012] and a combination of existing functions [Kim
and Choi, 2018] have been proposed.
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Popular Acquisition Functions (Minimization Case)

I Suppose that (x†, y†) = arg min(x,y)∈D y,

µ(x) := µ(x | D,λ), (13)

σ(x) := σ(x | D,λ), (14)

z =

{
f(x†)−µ(x)

σ(x) , if σ(x) > 0

0, if σ(x) = 0
. (15)

I PI criterion [Kushner, 1964] is defined as

aPI(x | D,λ) = Φ(z), (16)

where Φ is a cumulative distribution function of standard normal distribution.
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Popular Acquisition Functions (Minimization Case)

I EI criterion [Močkus et al., 1978] is defined as

aEI(x | D,λ) =

{
(f(x†)− µ(x))Φ(z) + σ(x)φ(z), if σ(x) > 0
0, if σ(x) = 0

, (17)

where φ is a probability density function of standard normal distribution.

I GP-UCB criterion [Srinivas et al., 2010] is defined as

aUCB(x | D,λ) = −µ(x) + βσ(x), (18)

where β is a trade-off hyperparameter.
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Acquisition Function Optimization

I We should find a global optimum of acquisition function.

I But, in practice, either global optimizer or local optimizer is used.

I Multi-started local optimizers can be a good option as a substitute of global
optimum.

I Analyses on these selections are provided in [Kim and Choi, 2020].
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On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]
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On Local Optimizers of Acquisition Functions in Bayesian
Optimization [Kim and Choi, 2020]
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Synthetic Example
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(d) Iteration 4

Figure 3: y = 4.0 cos(x) + 0.1x+ 2.0 sin(x) + 0.4(x− 0.5)2. EI is used to optimize.
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Relationship to Multi-Armed Bandit Problem

I Each machine returns a reward r̂a ∼ pθa(ra) where a ∈ {1, . . . ,K}.

I It minimizes a cumulative regret Tµ∗ −∑T
t=1 r̂at where µ∗ = maxa∈{1,...,K} µa.

I Bayesian optimization can be considered as infinite bandits with dependent arms.
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Relationship to Thompson Sampling

I Thompson sampling is usually applied in multi-armed bandit problems.

I For the case of a beta-Bernoulli bandit, Thompson sampling is defined as

Algorithm 2 Thompson Sampling for a Beta-Bernoulli Bandit

1: for t = 1, 2, . . . , T do
2: for k = 1, . . . ,K do
3: Sample θ̂k ∼ beta(αk, βk).
4: end for
5: xt ← arg maxk θ̂k.
6: Apply xt and observe rt.
7: (αxt , βxt)← (αxt + rt, βxt + 1− rt).
8: end for

I After sampling the possibilities, it chooses a maximizer of those sampled values.
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Relationship to Neural Processes

I Neural processes model distributions over functions, similar to Gaussian
processes [Garnelo et al., 2018a,b, Lee et al., 2020].

I It might be used as a surrogate model in meta-learning manner.
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BayesO [Kim and Choi, 2017]

I Current version: 0.5.0

I Supported Python version: 3.6, 3.7, 3.8, 3.9 (tested by Travis CI)

I Web page: https://bayeso.org

I GitHub repo: https://github.com/jungtaekkim/bayeso

I Documentation: https://bayeso.readthedocs.io

I License: MIT license

https://bayeso.org
https://github.com/jungtaekkim/bayeso
https://bayeso.readthedocs.io
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Comparison to Related Software in Python

Input Surrogate Native GPU
Vector Set GP TP RF Implement Support

SMAC [Hutter et al., 2011] X X
BayesOpt [Martinez-Cantin, 2014] X X
GPyOpt [The GPyOpt authors, 2016] X X X
GPFlowOpt [Knudde et al., 2017] X X X
BoTorch [Balandat et al., 2020] X X X
BayesO [Kim and Choi, 2017] X X X X X

Table 1: Comparison to related software in Python. GP, TP, and RF stand for Gaussian process
regression, Student-t process regression, and random forests. Native implement indicates an
implementation with Python and the minimum extra packages (including NumPy and SciPy).
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Bayesian Optimization on Structured Search Space

I Graph structure [Cui and Yang, 2018, Oh et al., 2019]

I Set structure [Buathong et al., 2020, Kim et al., 2021]

I Combinatorial structure [Baptista and Poloczek, 2018, Oh et al., 2019]

I Topological structure [Shiraishi et al., 2020]
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Combinatorial Bayesian Optimization using the Graph Cartesian
Product [Oh et al., 2019]
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Topological Bayesian Optimization with Persistence
Diagrams [Shiraishi et al., 2020]
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Bayesian Optimization with Approximate Set Kernels [Kim et al.,
2021]

I Denote that a set of m vectors is X = {x1, . . . ,xm}.

I If we define a set kernel

kset(X
(1),X(2)) =

1

|X(1)||X(2)|

|X(1)|∑
i=1

|X(2)|∑
j=1

k(x
(1)
i ,x

(2)
j ), (19)

a stochastic process can be directly employed.

I To reduce the computational complexity O(n2m2d), we propose an approximation
of the set kernel:

k̃set(X
(1),X(2);π,w, L) = kset(X̃

(1), X̃(2)), (20)

where π is a permutation function, w ∈ Rd is a vector for random scalar
projection, and L is the number of subsamples.
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Applications of Bayesian Optimization
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Automated Machine Learning
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Automated Machine Learning
I Data pre-processing

I Configuration space selection

I Specify a searching space X (e.g., a Cartesian space of kernel type, penalty
parameter, kernel coefficient, and degree)

I Configuration initialization

I Random initialization, Low discrepancy initialization

I Learn to initialize [Kim et al., 2017]

I Configuration optimization

I Random search [Bergstra and Bengio, 2012], Grid search

I Bayesian optimization

I Neural architecture search [Zoph and Le, 2017]

I Resource allocation
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Automated Machine Learning

I It automatically finds the optimal machine learning model without human
intervention.

I Feature transformation, algorithm selection, and hyperparameter optimization are
usually included.

I Given a training dataset Dtrain and a validation dataset Dval, the optimal
hyperparameter vector λ∗ for an automated machine learning system is found:

λ∗ = AutoML(Dtrain,Dval,Λ), (21)

where AutoML is an automated machine learning system.
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AutoML-Zero: Evolving Machine Learning Algorithms From
Scratch [Real et al., 2020]



35/44

Combinatorial 3D Shape Generation via Sequential
Assembly [Kim et al., 2020]

I 3D shape generation via sequential assembly mimics a human assembling process,
by allocating a budget of primitives given.

I We solve a sequential problem with Bayesian optimization-based framework of
combinatorial 3D shape generation

I It creates a 3D shape with a set of geometric primitives.

I We also introduce a new combinatorial 3D shape dataset that consists of 14
classes and 406 instances.
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Sequential Assembly with Unit Primitives

I Instead of employing other 3D representations such as point clouds, triangular
meshes, and voxels, we create a sequence of unit primitives such as 2 × 4 LEGO
bricks.

Figure 4: 2 × 4 LEGO brick.

I This 2 × 4 LEGO bricks make our problem more combinatorial and more
complex, compared to other primitives.
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Combinatorial 3D Shape Generation

I To determine the position of the next primitive, we define two evaluation
functions regarding occupiability and stability.

I Occupiability encourages us to follow a target shape and stability helps to create a
physically stable combination.

I We determine the position of the next primitive via Bayesian optimization.

I To avoid a suboptimal sequence, our framework includes a rollback step.



38/44

Experimental Results

1 step 20 steps 40 steps

60 steps 80 steps 118 steps

Figure 5: Generated assembling sequence that creates a car shape with 118 unit primitives.
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Experimental Results

I We apply our framework in optimizing specific explicit functions.
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Figure 6: Quantitative results on maximizing explicit evaluation functions.
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Combinatorial 3D Shape Dataset

Parallel Perpendicular Bar Line Plate Wall

Cuboid Pyramid Bench Sofa Cup Hollow

Table Car

Figure 7: Selected examples from our dataset.
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Takeaway

I Bayesian optimization is a powerful method to optimize a black-box function.

I Instead of methods based on heuristic or prior knowledge, it provides a structured
approach to find an optimal solution.

I Bayesian optimization is expanding into various real-world applications.
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Thank you.
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