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Recent Trends in Machine Learning: A Large-Scale Perspective

I Introduce recent trends in machine learning.

I In particular, focus on a large-scale machine learning model.

I Help to understand cutting-edge technologies in artificial intelligence.

I Provide an understanding of primary requirements in computer science and
artificial intelligence.

I Additionally, have special sessions by Kakao Brain.

https://www.kakaobrain.com
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Why Do We Need to Study a Large-Scale Model?

I A large-scale model is a cutting-edge technology in artificial intelligence.

I It is developed by utilizing a collection of techniques in diverse subfields of
computer science.

I It will be applied to novel use-cases in many areas, e.g., chemistry, biology, and
mathematics.

I It will demonstrate the effectiveness of machine learning and deep learning.
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Recent Progress: AlphaFold

Taken from https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology.

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Recent Progress: AlphaCode

I https://alphacode.deepmind.com/

Taken from https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode.

https://alphacode.deepmind.com/
https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
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Recent Progress: GitHub Copilot

Taken from https://copilot.github.com.

https://copilot.github.com
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Recent Progress: DALL·E

Taken from https://openai.com/blog/dall-e/.

https://openai.com/blog/dall-e/
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Drawbacks and Future Concerns on Large-Scale Models

I A large-scale model is too large to execute, e.g., GPT-3 has 175 billion parameters.

I It requires huge computational resources to train a model, e.g., the cost for
training GPT-3 using a cloud service is about $4.6M.

I A large-scale model is vulnerable to ethical issues, e.g., racism.

I Carbon footprint, caused by training and testing a large-scale model, accelerates
climate change.

https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/
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Course Introduction

I Class time: Wednesday 15:30 - 16:20

I Instructor: Jungtaek Kim (Email: jtkim@postech.ac.kr)

I Assessment: Letter grade, 70% homeworks and 30% class participation

I Language: Korean

I Teaching assistant: Dayoung Kong (Email: dayoung.kong@postech.ac.kr)
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Schedule (Tentative)

Date Contents

02/23 Course introduction
03/02 Basics of machine learning
03/09 Presidential election day (No lecture)
03/16 Basics of development tools & environments
03/23 Advances in large-scale language models: Transformer
03/30 Advances in large-scale language models: BERT
04/06 Advances in large-scale language models: GPT-1, GPT-2, GPT-3
04/13 Midterm exams period (No lecture)
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Schedule (Tentative)

Date Contents

04/20 Advances in large-scale language models: DistilBERT, RoBERTa, T-NLG
04/27 Advances in large-scale vision models: Vision Transformer, Swin Transformer
05/04 Advances in large-scale vision-and-language models: TBD (by Kakao Brain)
05/11 Advances in large-scale vision-and-language models: TBD (by Kakao Brain)
05/18 Advances in large-scale vision-and-language models: TBD (by Kakao Brain)
05/25 Advances in large-scale vision models: TBD
06/01 Other large-scale models
06/08 Final exams period (No lecture)
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Assessment

I Homeworks (70%): Six one-page reports during this semester, submitting them
through https://plms.postech.ac.kr.

I Class participation (30%): Turning on your video.

https://plms.postech.ac.kr
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Brief Introduction
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What Is Artificial Intelligence?

Figure 1: Four definitions of artificial intelligence.

Figure 1 is taken from [Russell and Norvig, 2010].

[Russell and Norvig, 2010] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 3 edition, 2010.
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What Is Artificial Intelligence?

Figure 2: Alan Turing.

I Acting humanly: The Turing Test approach

1. natural language processing to enable it to
communicate successfully in human language;

2. knowledge representation to store what it
knows or hears;

3. automated reasoning to use the stored
information to answer questions and to draw
new conclusions;

4. machine learning to adapt to new
circumstances and to detect and extrapolate
patterns;

5. computer vision to perceive objects;
6. robotics to manipulate objects and move

about.

Figure 2 is taken from Wikipedia.

[Russell and Norvig, 2010] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 3 edition, 2010.
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What Is Artificial Intelligence?
I Thinking humanly: The cognitive modeling approach

1. Through introspection – trying to catch our own thoughts as they go by;
2. Through psychological experiments – observing a person in action;
3. Through brain imaging – observing the brain in action.

I Thinking rationally: The “laws of thought” approach

I The Greek philosopher Aristotle was one of the first to attempt to codify “right
thinking;”

I His syllogisms provided patterns for argument structures that always yielded correct
conclusions when given correct premises – for example, “Socrates is a man; all men
are mortal; therefore Socrates is mortal;”

I By 1965, programs existed that could, in principle, solve any solvable problem
described in logical notation;

I Although if no solution exists, the program might loop forever.

[Russell and Norvig, 2010] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 3 edition, 2010.
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What Is Artificial Intelligence?
I Acting rationally: The rational agent approach

I An agent is just something that acts – all computer programs do something, but
such an agent is expected to do more;

I A rational agent is one that acts so as to achieve the best outcome or, when there is
uncertainty, the best expected outcome;

I Making correct inferences by the “laws of thought” approach is sometimes part of
being a rational agent, but correct inference is not all rationality;

I All the skills needed for the Turing Test also allow an agent to act rationally;

I Finally, the rational agent approach has two advantages over the other approaches

1. It is more general than the “laws of thought” approach because correct inference is
just one of several possible mechanisms for achieving rationality;

2. It is more amenable to scientific development than the approaches based on human
behavior or human thought.

[Russell and Norvig, 2010] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 3 edition, 2010.
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What Is Machine Learning?

Environments

Data sources

Model

Learning

Inference

I Machine learning is a data-driven
method for artificial intelligence.

I Three key ingredients in machine
learning

1. Data;
2. A machine learning model;
3. A learning algorithm.

I Details will be covered in the next
lecture.
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What Is Machine Learning?

Feedback Goal

Supervised learning Instructive feedback Regression & classification

Unsupervised learning No feedback Representation learning & clustering

Reinforcement learning Evaluative feedback Sequential decision making

Taken from the slides created by Prof. Seungjin Choi.
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Deep Learning in Machine Learning

Taken from Wikipedia.
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Deep Learning Revolution
I Resurgence of deep learning has been started in 2006 by [Hinton et al., 2006].

I The following advances allow deep learning to attract great attention from diverse
research fields and industries.

1. Cheap computing resources, i.e., GPU;
2. Huge data, i.e., social networks and streaming media;
3. Improvements in machine learning algorithms, i.e., ReLU and ADAM.

I Deep learning starts to show its effectiveness in various fields such as speech
recognition [Graves et al., 2013], computer vision [Krizhevsky et al., 2012],
machine translation [Kalchbrenner and Blunsom, 2013, Sutskever et al., 2014].

[Hinton et al., 2006] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554,
2006.

[Graves et al., 2013] A. Graves, A.-r. Mohamed, and G. E. Hinton. Speech recognition with deep recurrent neural networks. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 6645–6649, 2013.

[Krizhevsky et al., 2012] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), volume 25, Lake Tahoe, Nevada, USA, 2012.

[Kalchbrenner and Blunsom, 2013] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1700–1709, 2013.

[Sutskever et al., 2014] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 27, Montreal, Quebec, Canada, 2014.
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Deep Learning to Large-Scale Models
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 118

Taken from [Sevilla et al., 2022].

[Sevilla et al., 2022] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends across three eras of machine learning.
arXiv preprint arXiv:2202.05924, 2022.
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Deep Learning to Large-Scale Models
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 118

Taken from [Sevilla et al., 2022].

[Sevilla et al., 2022] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends across three eras of machine learning.
arXiv preprint arXiv:2202.05924, 2022.
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Deep Learning to Large-Scale Models

1952 1960 1968 1976 1984 1992 2000 2008 2016

Publication date
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 118

Taken from [Sevilla et al., 2022].

[Sevilla et al., 2022] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends across three eras of machine learning.
arXiv preprint arXiv:2202.05924, 2022.



27/36

Deep Learning to Large-Scale Models
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 99

Taken from [Sevilla et al., 2022].

[Sevilla et al., 2022] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos. Compute trends across three eras of machine learning.
arXiv preprint arXiv:2202.05924, 2022.
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Gradients

Figure 3: Illustration of gradients.

I Suppose that f : Rd → R and x = [x1, . . . , xd] ∈ Rd. The gradient of a function
f at x is

∇f(x) =
[
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

]
∈ Rd. (1)

Figure 3 is taken from Wikipedia.
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Automatic Differentiation

I Automatic differentiation evaluates the derivative of a function where a function is
expressed by a sequence of elementary arithmetic operations (e.g., addition,
subtraction, multiplication, and division) and elementary functions (e.g., exp, log,
sin, and cos).

I Two distinct modes exist:

1. Forward accumulation
dwi

dx
=

dwi

dwi−1

dwi−1

dx
, (2)

2. Reverse accumulation
dy

dwi
=

dy

dwi+1

dwi+1

dwi
. (3)
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Automatic Differentiation

I We have already known many derivatives of simple functions:

dx2

dx
=???, (4)

d sin(x)

dx
=???, (5)

d cos(x)

dx
=???, (6)

d tan(x)

dx
=???, (7)

d exp(x)

dx
=???, (8)

d(f(x) + g(x))

dx
=???, (9)

df(x)g(x)

dx
=???, (10)

df(g(x))

dx
=???, (11)

d sin(f(x))

dx
=???, (12)

d exp(f(x))

dx
=???. (13)
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Automatic Differentiation

I We have already known many derivatives of simple functions:

dx2

dx
= 2x, (14)

d sin(x)

dx
= cos(x), (15)

d cos(x)

dx
= − sin(x), (16)

d tan(x)

dx
= sec2(x), (17)

d exp(x)

dx
= exp(x), (18)

d(f(x) + g(x))

dx
= f ′(x) + g′(x), (19)

df(x)g(x)

dx
= f(x)g′(x) + f ′(x)g(x), (20)

df(g(x))

dx
= f ′(g(x))g′(x), (21)

d sin(f(x))

dx
= cos(f(x))f ′(x), (22)

d exp(f(x))

dx
= exp(f(x))f ′(x). (23)
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Automatic Differentiation
I An objective function is

f(x1, x2) = x1x2 + sin(x1). (24)

Figure 4: Computational graph of (24).

Figure 4 is taken from Wikipedia.
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Automatic Differentiation

I An objective function is

f(x1, x2) = x1x2 + sin(x1). (25)

I Suppose that we are given the followings:

w1 = x1, w2 = x2, w3 = w1w2, w4 = sin(w1), w5 = w3 + w4. (26)

I Then,

df(x1, x2)

dx1
= ẇ5

= ẇ3 + ẇ4

= w1ẇ2 + ẇ1w2 + cos(w1)ẇ1

= x2 + cos(x1). (27)
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Automatic Differentiation

I An objective function is

f(x1, x2) = x1x2 + sin(x1). (28)

I Suppose that we are given the followings:

w1 = x1, w2 = x2, w3 = w1w2, w4 = sin(w1), w5 = w3 + w4. (29)

I Then,

df(x1, x2)

dx2
= ẇ5

= ẇ3 + ẇ4

= w1ẇ2 + ẇ1w2 + cos(w1)ẇ1

= x1. (30)
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Any Questions?
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