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Large-Scale Datasets

I The definition of large-scale datasets is inevitably unclear, but dataset cleaning
and annotation for such datasets are challenging due to their size.

I Curated dataset:

1. ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) [Russakovsky et al., 2015];

2. Open Images Dataset V6 (this link, partially);
3. Wikipedia (in terms of specific categorization, e.g., topics);
4. Conceptual 3M [Sharma et al., 2018] & Conceptual 12M [Changpinyo et al., 2021].

I Non-curated dataset (including datasets with machine-generated labels):

1. JFT-300M [Sun et al., 2017] & JFT-3B [Zhai et al., 2021] (maybe);
2. Open Images Dataset V6 (this link, mostly);
3. Common Crawl (https://commoncrawl.org);
4. ShapeNet [Chang et al., 2015] (mostly).

https://storage.googleapis.com/openimages/web/factsfigures.html
https://storage.googleapis.com/openimages/web/factsfigures.html
https://commoncrawl.org


5/31

ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012)

Figure 1: Examples of ILSVRC2012.

I It is to solve tasks for classification,
classification with localization, and
fine-grained classification.

I #Classes: 1,000

I #Training: 1,281,167

I #Validation: 50,000

I #Test: 100,000

I Details can be found in this link.

Figure 1 is taken from https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=imagenet2012.

https://image-net.org/challenges/LSVRC/2012/index
https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=imagenet2012
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Open Images Dataset V6

Figure 2: Examples of Open Images Dataset V4.

I It is a dataset of ∼9M images
annotated with image-level labels,
object bounding boxes, object
segmentation masks, visual
relationships, and localized
narratives.

I Details can be found in this link.

Figure 2 is taken from https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=open_images_v4.

https://storage.googleapis.com/openimages/web/factsfigures.html
https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=open_images_v4
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Open Images Dataset V6

Images
Labels

Machine-Generated Human-Verified

#Training 9,011,219 164,819,642 57,524,352 (pos + neg)

#Validation 41,620 681,179 595,339 (pos + neg)

#Test 125,436 2,061,177 1,799,883 (pos + neg)

#Classes – 15,387 19,957

#Trainable Classes – 9,034 9,605
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Conceptual 12M

I It is a dataset with ∼12 million image-text pairs meant to be used for
vision-and-language pre-training.

I It covers a much more diverse set of visual concepts than the Conceptual 3M
dataset [Sharma et al., 2018].

I Due to the proprietary rights, images are provided as image URLs.

I Details can be found in this link.

[Sharma et al., 2018] P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual Captions: A cleaned, hypernymed, image alt-text dataset for
automatic image captioning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 2556–2565, Melbourne,
Australia, 2018.

https://github.com/google-research-datasets/conceptual-12m
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Conceptual 12M

Figure 3: Examples of Conceptual 12M.

Taken from https://github.com/google-research-datasets/conceptual-12m.

https://github.com/google-research-datasets/conceptual-12m
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Common Crawl

I It is a project that crawls the web and
freely opens its archives.

I It generally crawls every month since
2008.

I This dataset is used in diverse
language models.

I Details can be found in
https://commoncrawl.org.

Figure 4: Cumulative size of Common Crawl.

Figure 4 is taken from https://commoncrawl.github.io/cc-crawl-statistics/.

https://commoncrawl.org
https://commoncrawl.github.io/cc-crawl-statistics/
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Automatic Differentiation Frameworks
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Automatic Differentiation Frameworks

I As discussed in the previous lectures, automatic differentiation is a key component
of modern machine learning models.

I There are various projects for automatic differentiation: TensorFlow [Abadi et al.,
2016], PyTorch [Paszke et al., 2019], Caffe, MXNet, and Theano.

I They support most of techniques in modern machine learning, e.g., a support for
GPUs, parallelism, mixed-precision, diverse optimizers, and diverse layers.

I They are growing fast!

[Abadi et al., 2016] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: A
system for large-scale machine learning. In USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 265–283,
Savannah, Georgia, USA, 2016.

[Paszke et al., 2019] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A.
Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, Vancouver, British Columbia,
Canada, 2019.
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TensorFlow vs. PyTorch

Taken from Google Trends.
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Sample Code with PyTorch

Taken from this link.

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
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Machine Learning Accelerators
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Machine Learning Accelerators

(a) CPU (b) GPU

(c) FPGA (d) ASIC (e) TPU

Figure 5: Examples of machine learning accelerators.

Figure 5(a) is taken from this link; Figure 5(b) is taken from this link; Figure 5(c) is taken from this link; Figure 5(d) is taken from Wikipedia;
Figure 5(e) is taken from this link.

https://newsroom.intel.com/image-archive/images-intel-announces-worlds-best-gaming-processor-new-9th-gen-intel-core-i9-9900k
https://nvidianews.nvidia.com/multimedia/data-center-cloud/enterprise-hpc
https://cloud.google.com/tpu
https://www.intel.com/content/www/us/en/products/programmable.html
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Machine Learning Accelerators

I Model training and inference are accomplished by running them on a machine
learning accelerator.

I There are diverse types of accelerators:

1. a central processing unit (CPU);
2. a graphics processing unit (GPU);
3. a field-programmable gate array (FPGA);
4. an application-specific integrated circuit (ASIC);
5. a tensor processing unit (TPU).

I Because of relatively cheap price and a relatively large number of threads, GPUs
are dominant now.
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Why Are GPUs More Popular Than CPUs in Machine Learning?

I GPUs are specialized in computing the same operations over a set of input data
simultaneously.

I In particular, in the perspective of large-scale machine learning, GPUs are
specialized in linear algebra operations such as matrix-vector multiplication and
matrix-matrix multiplication.

I CUDA, developed by NVIDIA, is widely used in this field, whereas other tech
companies such as Intel and AMD struggle to spread their own programs.

I Therefore, unfortunately, NVIDIA graphics cards are the only option we have.
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Why Are GPUs More Popular Than CPUs in Machine Learning?

Taken from this link.

https://www.cs.cornell.edu/courses/cs4787/2020sp/lectures/Lecture19.pdf
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How About Convolution Operations?
I Suppose that a data x = [x1, x2, x3, x4, x5] and a kernel w = [w1, w2, w3] are

given.

I The result of 1D convolution with zero padding is

w3x1
w2x1 + w3x2

w1x1 + w2x2 + w3x3
w1x2 + w2x3 + w3x4
w1x3 + w2x4 + w3x5

w1x4 + w2x5
w1x5


. (1)

I By converting x to the Toeplitz matrix, (1) can be expressed as 0 0 x1 x2 x3 x4 x5
0 x1 x2 x3 x4 x5 0
x1 x2 x3 x4 x5 0 0

>  w1

w2

w3

 . (2)
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Floating Point Operations (FLOPs)

I It is a measure of the amount of computations.

I Unlike FLOPs, floating point operations per second (FLOPS) is a measure of
computer performance.

I FLOPs is widely used in comparing machine learning models where respective
models are completely different.

I It is usually computed by extra software, e.g.,
https://github.com/facebookresearch/fvcore.

https://github.com/facebookresearch/fvcore
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Cost of Computing
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Figure 6: Approximate USD per GFLOPS vs. Date. Costs are adjusted based on the cost in
2020.
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Floating-Point Arithmetic
I In computer systems, all real numbers are expressed by binary floating-point

numbers:
fraction× baseexponent, (3)

where base = 2.

I For example, a decimal real number 123.456 is

1.11101101110100101111001× 26, (4)

as a binary single-precision number.

I According to the IEEE 754 standard, it is stored as

0 | 10000101 | 11101101110100101111001. (5)

Figure 7: Example of a layout for 32-bit floating point.

Figure 7 is taken from Wikipedia.
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Floating-Point Arithmetic

I Low-precision arithmetic, e.g., 16-bit floating
point (a.k.a. half-precision), is beneficial for

1. running more operations;
2. reducing memory usage;
3. reducing communication costs;
4. using less energy,

in machine learning.

I Many machine learning accelerators support
low-precision arithmetic.

Figure 8: Specifications of NVIDIA A100.

Figure 8 is taken from this link.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
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Any Questions?
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