Basics of Machine Learning Tools [CSED490X] Recent Trends in ML: A Large-Scale Perspective

Jungtaek Kim jtkim@postech.ac.kr

POSTECH Pohang 37673, Republic of Korea https://jungtaek.github.io

March 16, 2022

Table of Contents

Large-Scale Datasets

Automatic Differentiation Frameworks

Machine Learning Accelerators

Large-Scale Datasets

Large-Scale Datasets

- The definition of large-scale datasets is inevitably unclear, but dataset cleaning and annotation for such datasets are challenging due to their size.
- Curated dataset:
 - ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [Russakovsky et al., 2015];
 - 2. Open Images Dataset V6 (this link, partially);
 - 3. Wikipedia (in terms of specific categorization, e.g., topics);
 - 4. Conceptual 3M [Sharma et al., 2018] & Conceptual 12M [Changpinyo et al., 2021].

▶ Non-curated dataset (including datasets with machine-generated labels):

- 1. JFT-300M [Sun et al., 2017] & JFT-3B [Zhai et al., 2021] (maybe);
- 2. Open Images Dataset V6 (this link, mostly);
- Common Crawl (https://commoncrawl.org);
- 4. ShapeNet [Chang et al., 2015] (mostly).

ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

Figure 1: Examples of ILSVRC2012.

- It is to solve tasks for classification, classification with localization, and fine-grained classification.
- #Classes: 1,000
- #Training: 1,281,167
- #Validation: 50,000
- ▶ #Test: 100,000
- Details can be found in this link.

Open Images Dataset V6

It is a dataset of ~9M images annotated with image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives.

Details can be found in this link.

Figure 2: Examples of Open Images Dataset V4.

	Images	Labels		
		Machine-Generated	Human-Verified	
#Training	9,011,219	164,819,642	57,524,352 (pos + neg)	
#Validation	41,620	681,179	595,339 (pos $+ neg$)	
#Test	125,436	2,061,177	1,799,883 (pos + neg)	
#Classes	-	15,387	19,957	
#Trainable Classes	_	9,034	9,605	

Conceptual 12M

It is a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-training.

- It covers a much more diverse set of visual concepts than the Conceptual 3M dataset [Sharma et al., 2018].
- ▶ Due to the proprietary rights, images are provided as image URLs.

Details can be found in this link.

[[]Sharma et al., 2018] P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual Captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 2556–2565, Melbourne, Australia, 2018. 8/31

Conceptual 12M

<PERSON> was the first US president to attend a tournament in sumo's hallowed Ryogoku Kokugikan arena. (AFP photo)

Hand holding a fresh mangosteen

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn And <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine Life

Figure 3: Examples of Conceptual 12M.

Taken from https://github.com/google-research-datasets/conceptual-12m.

Common Crawl

- It is a project that crawls the web and freely opens its archives.
- It generally crawls every month since 2008.
- This dataset is used in diverse language models.
- Details can be found in https://commoncrawl.org.

Figure 4: Cumulative size of Common Crawl.

POSTECH POMME UNIVERSITY OF SCIENCE AND TECHNOLOGY 10/31

Figure 4 is taken from https://commoncrawl.github.io/cc-crawl-statistics/.

Automatic Differentiation Frameworks

Automatic Differentiation Frameworks

- As discussed in the previous lectures, automatic differentiation is a key component of modern machine learning models.
- There are various projects for automatic differentiation: TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2019], Caffe, MXNet, and Theano.
- They support most of techniques in modern machine learning, e.g., a support for GPUs, parallelism, mixed-precision, diverse optimizers, and diverse layers.

They are growing fast!

[[]Abadi et al., 2016] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: A system for large-scale machine learning. In USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 265–283, Savannah, Georgia, USA, 2016.

[[]Paszke et al., 2019] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, Vancouver, British Columbia, TECH Canada, 2019.

TensorFlow vs. PyTorch

Taken from Google Trends.

```
import torch
   import math
   x = torch.linspace(-math.pi, math.pi, 2000)
   v = torch.sin(x)
   p = torch.tensor([1, 2, 3])
   xx = x.unsqueeze(-1).pow(p)
 Q
10
   model = torch.nn.Sequential(
       torch.nn.Linear(3, 1),
12
       torch.nn.Flatten(0, 1)
13
  )
14
   loss fn = torch.nn.MSELoss(reduction='sum')
15
16
   learning_rate = 1e-3
17
   optimizer = torch.optim.RMSprop(model.parameters().
18
                                    lr=learning_rate)
19
   for t in range(2000):
20
       v pred = model(xx)
       loss = loss fn(v pred, v)
       if t % 100 == 99:
24
           print(t. loss.item())
26
       optimizer.zero_grad()
27
28
       loss.backward()
29
30
       optimizer.step()
```



```
import torch
Import packages
                       import math
                       x = torch.linspace(-math.pi, math.pi, 2000)
                       v = torch.sin(x)
                       p = torch.tensor([1, 2, 3])
                      xx = x.unsqueeze(-1).pow(p)
                   10
                      model = torch.nn.Sequential(
                           torch.nn.Linear(3, 1),
                           torch.nn.Flatten(0, 1)
                   12
                   13
                       )
                   14
                       loss fn = torch.nn.MSELoss(reduction='sum')
                   16
                       learning_rate = 1e-3
                      optimizer = torch.optim.RMSprop(model.parameters(),
                   18
                                                       lr=learning rate)
                   19
                       for t in range(2000):
                   20
                           v pred = model(xx)
                           loss = loss_fn(y_pred, y)
                           if t % 100 == 99:
                   24
                               print(t, loss.item())
                   26
                           optimizer.zero grad()
                   27
                   28
                           loss.backward()
                   29
                   30
                           optimizer.step()
```


		1 2 3	import torch import math
Prep	are for a dataset	4 5 6	<pre>x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)</pre>
	are for a dastaser	78	<pre>p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p)</pre>
		10	<pre>model = torch.nn.Sequential(</pre>
		11	torch.nn.Linear(3, 1),
		13)
		14	<pre>loss_fn = torch.nn.MSELoss(reduction='sum')</pre>
		15	Annual and a second sec
		10	<pre>learning_rate = 1e-3 optimizer = torch optim RMSprop(model parameters()</pre>
		18	lr=learning_rate)
		19	<pre>for t in range(2000):</pre>
		20	y_pred = model(xx)
		21	loss = loss fn(y prod y)
		23	if t % 100 == 99:
		24	<pre>print(t, loss.item())</pre>
		25	
		26	optimizer.zero_grad()
		28	loss.backward()
		29	
		30	optimizer.step()

	1 2 3	import torch import math	
	4 5	<pre>x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)</pre>	
	6 7 8 9	<pre>p = torch.tensor([1, 2, 3]) xx = x.unsqueeze(-1).pow(p)</pre>	
	10	<pre>model = torch.nn.Sequential(torch.nn.linear(3, 1)</pre>	٦
Create a model	12	torch.nn.Flatten(0, 1)	
	14	<pre>/ loss_fn = torch.nn.MSELoss(reduction='sum')</pre>	
	15 16 17 18	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>	
	19 20 21	<pre>for t in range(2000): y_pred = model(xx)</pre>	
	22 23 24	<pre>loss = loss_fn(y_pred, y) if t % 100 == 99: print(t, loss.item())</pre>	
	25 26 27	optimizer.zero_grad()	
	28 29	loss.backward()	
	30	optimizer.step()	

	1 2	<pre>import torch import math</pre>
	3 4 5	<pre>x = torch.linspace(-math.pi, math.pi, 2000) y = torch.sin(x)</pre>
	6 7	p = torch.tensor([1, 2, 3])
	9	xx = x.unsqueeze(-1).pow(p)
	10	<pre>model = torch.nn.Sequential(</pre>
	11	torch.nn.Linear(3, 1),
	12	torch.nn.Flatten(0, 1)
	14	<pre>) loss fn = torch.nn.MSELoss(reduction='sum')</pre>
Deelene e loss en d	15	
Declare a loss and		
an antimizer	16	<pre>learning_rate = 1e-3</pre>
an optimizer	16 17	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 19	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 19 20 21	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 19 20 21 22	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 19 20 21 22 23	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 20 21 22 23 24	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 20 21 22 23 24 25	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 20 21 22 23 24 25 26	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 20 21 22 23 24 25 26 27	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>
an optimizer	16 17 18 20 21 22 23 24 25 26 27 28 20	<pre>learning_rate = 1e-3 optimizer = torch.optim.RMSprop(model.parameters(),</pre>

Machine Learning Accelerators

Machine Learning Accelerators

(a) CPU

	A103 4608 PCIe	A103 EEGS PCIe	4100 4008 SXM	0110 012 0000	
FP64	9.7 TFLOPS				
FP64 Teesor Core	19.5 TFLOPS				
FP32	19.5 TFLOPS				
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*				
BFLOAT16 Tensor Care	312 TFLOPS 624 TFLOPS*				
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*				
INT8 Tensor Core	626 TOPS 1268 TOPS*				
OPU Mereary	400B HBM2	800B HEM2e	4038 HBM2	805B HEM2a	
OPU Memory Bandwidth	1,55508/a	1,93508/4	1,55508/a	2,03968/a	
Max Thermal Design Power ITDP1	250W	300W	400W	100W	

(b) GPU

Figure 5(a) is taken from this link; Figure 5(b) is taken from this link; Figure 5(c) is taken from this link; Figure 5(d) is taken from Wikiped Figure 5(e) is taken from this link.

Machine Learning Accelerators

Model training and inference are accomplished by running them on a machine learning accelerator.

- There are diverse types of accelerators:
 - 1. a central processing unit (CPU);
 - 2. a graphics processing unit (GPU);
 - 3. a field-programmable gate array (FPGA);
 - 4. an application-specific integrated circuit (ASIC);
 - 5. a tensor processing unit (TPU).
- Because of relatively cheap price and a relatively large number of threads, GPUs are dominant now.

Why Are GPUs More Popular Than CPUs in Machine Learning?

- GPUs are specialized in computing the same operations over a set of input data simultaneously.
- In particular, in the perspective of large-scale machine learning, GPUs are specialized in linear algebra operations such as matrix-vector multiplication and matrix-matrix multiplication.
- CUDA, developed by NVIDIA, is widely used in this field, whereas other tech companies such as Intel and AMD struggle to spread their own programs.
- ► Therefore, unfortunately, NVIDIA graphics cards are the only option we have.

Why Are GPUs More Popular Than CPUs in Machine Learning?

```
// Kernel definition
   __global__ void VecAdd(float* A, float* B, float* C)
 2
 3
 4
        int i = threadIdx.x;
 5
        C[i] = A[i] + B[i];
 6
   }
 7
   int main()
 8
   {
 9
        . . .
10
        // Kernel invocation with N threads
        VecAdd<<<1, N>>>(A, B, C);
11
12
        . . .
13 }
```


How About Convolution Operations?

- Suppose that a data $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5]$ and a kernel $\mathbf{w} = [w_1, w_2, w_3]$ are given.
- The result of 1D convolution with zero padding is

 $\begin{bmatrix} w_{3}x_{1} \\ w_{2}x_{1} + w_{3}x_{2} \\ w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} \\ w_{1}x_{2} + w_{2}x_{3} + w_{3}x_{4} \\ w_{1}x_{3} + w_{2}x_{4} + w_{3}x_{5} \\ w_{1}x_{4} + w_{2}x_{5} \\ w_{1}x_{5} \end{bmatrix}.$ (1)

(2)

25/31

By converting x to the Toeplitz matrix, (1) can be expressed as

$$\begin{bmatrix} 0 & 0 & x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & x_1 & x_2 & x_3 & x_4 & x_5 & 0 \\ x_1 & x_2 & x_3 & x_4 & x_5 & 0 & 0 \end{bmatrix}^{\top} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}.$$

Floating Point Operations (FLOPs)

- It is a measure of the amount of computations.
- Unlike FLOPs, floating point operations per second (FLOPS) is a measure of computer performance.
- FLOPs is widely used in comparing machine learning models where respective models are completely different.
- It is usually computed by extra software, e.g., https://github.com/facebookresearch/fvcore.

Cost of Computing

Figure 6: Approximate USD per GFLOPS vs. Date. Costs are adjusted based on the cost in 2020.

POSTECH POMME UNIVERSITY OF SCIENCE AND ITCANDIDGY 27/31

Floating-Point Arithmetic

In computer systems, all real numbers are expressed by binary floating-point numbers:

```
fraction \times base<sup>exponent</sup>, (3)
```

where base = 2.

▶ For example, a decimal real number 123.456 is

```
1.11101101110100101111001 \times 2^{6},
```

as a binary single-precision number.

According to the IEEE 754 standard, it is stored as

 $0 \mid 10000101 \mid 11101101110100101111001.$

(4)

(5)

Floating-Point Arithmetic

- Low-precision arithmetic, e.g., 16-bit floating point (a.k.a. half-precision), is beneficial for
 - 1. running more operations;
 - 2. reducing memory usage;
 - 3. reducing communication costs;
 - 4. using less energy,

in machine learning.

 Many machine learning accelerators support low-precision arithmetic.

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS (SXM4 AND PCIE FORM FACTORS)

	A100 40GB PCle	A100 80GB PCle	A100 40GB SXM	A100 80GB SXM		
FP64	9.7 TFLOPS					
FP64 Tensor Core	19.5 TFLOPS					
FP32	19.5 TFLOPS					
Tensor Float 32 (TF32)		156 TFLOPS	312 TFLOPS			
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*					
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*					
INT8 Tensor Core	624 TOPS 1248 TOPS*					
GPU Memory	40GB HBM2	80GB HBM2e	40GB HBM2	80GB HBM2e		
GPU Memory Bandwidth	1,555GB/s	1,935GB/s	1,555GB/s	2,039GB/s		
Max Thermal Design Power (TDP)	250W	300W	400W	400W		

Figure 8: Specifications of NVIDIA A100.

Figure 8 is taken from this link.

Any Questions?

References I

- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: A system for large-scale machine learning. In USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 265–283, Savannah, Georgia, USA, 2016.
- A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.
- S. Changpinyo, P. Sharma, N. Ding, and R. Soricut. Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 2021.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, Vancouver, British Columbia, Canada, 2019.
- O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3):211–252, 2015.
- P. Sharma, N. Ding, S. Goodman, and R. Soricut. Conceptual Captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 2556–2565, Melbourne, Australia, 2018.
- C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the International Conference on Computer Vision (ICCV), pages 843–852, Venice, Italy, 2017.
- X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer. Scaling vision transformers. arXiv preprint arXiv:2106.04560, 2021.