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Introduction
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The Transformer era has begun!
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Transformer

Figure 1: Sentinel Prime.

I Transformer has been introduced in the work
by Vaswani et al. [2017].

I Sequence modeling and sequence transduction
problems are solved in this paper.

I Language modeling and machine translation
are target applications of the vanilla
Transformer architecture.

I Following the modern sequence modeling
scheme, it devises an encoder-decoder
architecture.

Figure 1 is taken from Wikipedia.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 5998–6008, Long Beach, California, USA, 2017.
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Today’s Lecture

I We will cover the tasks solved in this paper first.

I Then, we will study datasets for machine translation.

I Before introducing the Transformer model, we will visit traditional models for
sequence modeling.

I Eventually, we will study the Transformer model and a learning algorithm, used in
this paper.

I Finally, we will investigate the experimental results.
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Tasks
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Tasks

I The vanilla Transformer is used in solving a machine translation problem.

Figure 2: English to Korean Translation.

I The sentence given, “This course is awesome!” is tokenized as “this”, “course”,
“is”, “awesome”, “!”.

I After tokenization, each token is expressed as a one-hot encoded vector with a
vocabulary of tokens.

Figure 2 is taken from Google Translate.
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Vocabulary of Tokens

Figure 3: Tokenization of “This course is awesome!”.



10/45

Datasets
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Datasets

I WMT 2014 English-German and English-French datasets are used.

I The standard WMT 2014 English-German dataset consists of about 4.5 million
sentence pairs.

I The WMT 2014 English-French dataset consists of 36 million sentence pairs.

I Each training batch contains a set of sentence pairs containing approximately
25,000 source tokens and 25,000 target tokens.
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A Machine Learning Model
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Recurrent Neural Networks

Figure 4: Illustration of recurrent neural networks.

I It is a class of neural networks, which has connections between nodes from a
directed graph along a sequence.

I It can learn a temporal dynamic behavior for a sequence.

I Long short-term memory (LSTM) and gated recurrent unit (GRU) have been
proposed.

Figure 4 is taken from Wikipedia.
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Recurrent Neural Networks

Figure 5: Types of recurrent neural networks.

Taken from https://karpathy.github.io/2015/05/21/rnn-effectiveness/.

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sequence-to-Sequence Models

I A sequence-to-sequence model is designed as an encoder-decoder architecture.

I It is defined as a conditional language model, which is conditioned on the
previously-generated word sequence of target language and a sentence of source
language.

이코스는굉장합니다!

Figure 6: Encoder-decoder architecture.
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Transformer
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Embedding Layer

Figure 7: One-hot encoding and a 4-dimensional embedding.

I It transforms a one-hot encoded vector to a d-dimensional embedding vector.

I This transformation is usually initialized at random.

Figure 7 is taken from this link.

https://www.tensorflow.org/text/guide/word_embeddings
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Transformer
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Positional Encoding

Figure 8: Visualization of positional
encoding.

I The Transformer model does not contain
recurrence and convolution, even though it is
to model a sequence.

I Thus, it requires the information about the
relative or absolution position of the tokens in
a sequence.

I Positional encoding is defined as

PE(pos,2i) = sin
( pos

100002i/dmodel

)
, (1)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
, (2)

where pos is the position, i is the dimension,
and dmodel is the dimensionality of the model.

Figure 8 is taken from this link.

https://www.tensorflow.org/text/tutorials/transformer
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Transformer
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Scaled Dot-Product Attention

I The input consists of queries and keys of
dimension dk, and values of dimension dv.

I It computes the dot products of the query with
all keys, divide each by

√
dk, and apply a

softmax function to obtain the weights on the
values.

I Finally, scaled dot-product attention is defined
as

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V,

(3)
where Q, K, and V are query, key, and value
matrices, respectively.
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Dot Product & Cosine Similarity
I Suppose that x,y ∈ Rd are d-dimensional vectors.

I Dot product is defined as

x · y = x>y = ‖x‖‖y‖ cos θ. (4)

I Cosine similarity is defined as

cos θ =
x · y
‖x‖‖y‖

. (5)

Figure 9: Illustration of dot product and cosine similarity.
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Why Does Scaled Dot-Product Attention Rescale by 1/
√
dk?

Taken from the Misha Laskin’s slides.

https://twitter.com/MishaLaskin/status/1479246928454037508


24/45

Multi-Head Attention

I Instead of performing a single attention function with
dmodel-dimensional keys, values, and queries, they are linearly
projected h times with different, learned linear projects to dk, dk,
and dv dimensions, respectively.

I On each of these projected versions of queries, keys, and values,
the attention function is performed in parallel.

I Multi-head attention is defined as

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O, (6)

where
headi = Attention(QWQ

i ,KW
K
i , V W

V
i ), (7)

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and

WO ∈ Rhdv×dmodel .
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Transformer
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Add & Norm
I It employs a residual connection [He et al., 2016] and and layer normalization:

LayerNorm(x+ Sub-layer(x)), (8)

where Sub-layer is a sub-layer for applying some transformations.
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 10: Various normalization techniques.

Figure 10 is taken from [Wu and He, 2018].
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Position-wise Feed-Forward Networks

I Each of the layers in an encoder and a decoder contains a fully-connected
feed-forward network.

I It is applied to each position separately and identically.

I A position-wise feed-forward network (FFN) is defined as

FFN(x) = max(0, xW1 + b1)W2 + b2, (9)

where W1 ∈ Rdmodel×dFFN , b1 ∈ RdFFN , W2 ∈ RdFFN×dmodel , and b2 ∈ Rdmodel .
Note that max(0, x) is identical to ReLU(x).
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Transformer



29/45

Output Probabilities

I Watch this video to check out how it works.

https://lena-voita.github.io/resources/lectures/seq2seq/general/enc_dec_prob_idea.mp4
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A Learning Algorithm
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Hardware & Schedule

I This model is trained on 8 NVIDIA P100 GPUs.

I The base model is trained for a total of 100,000 steps or 12 hours, where each
training step takes about 0.4 seconds.

I The big model is trained for 300,000 steps or 3.5 days, where each step takes
about 1.0 seconds.
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Optimizer & Regularization

Optimizer

I Adam optimizer [Kingma and Ba, 2015] with β1 = 0.9, β2 = 0.98, and ε = 10−9

is used.

I A learning rate is scheduled as

learning rate = d−0.5modelmin(t−0.5, tτ−1.5), (10)

at step t, where τ is a warm-up step.

Regularization

I Residual dropout and label smoothing are used as regularization techniques.
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Experimental Results
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BLEU Score

I BLEU score [Papineni et al., 2002] is an evaluation metric for machine translation,
which is capable of replacing expensive human evaluations.

I It is defined as

BLEU = BPexp(

N∑
n=1

wn log pn), (11)

where

BP =

{
1 if c > r,

exp(1− r/c) otherwise,
(12)

pn =

∑
C∈Candidates

∑
n-gram∈C Countclip(n-gram)∑

C′∈Candidates

∑
n-gram′∈C′ Count(n-gram

′)
, (13)

wn is a weight for n-gram. Note that c and r are the length of the candidate
translation and the effective reference corpus length, respectively.
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BLEU Score

I Two candidates might be all
acceptable.

I However, by comparing to reference
sentences, counting the number of
shared words indicates Candidate 1 is
good and Candidate 2 is bad.

I It implies that Candidate 1 is closer to
the reference sentences than
Candidate 2.
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BLEU Score

I Simple counting does not reflect the
quality of candidate sentence properly.

I Thus, the number of shared words is
clipped by the maximum count in each
of the reference sentences.

I Modified unigram precision is 2/7.
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BLEU Score

I Since Candidate is too short compared
to the reference sentences, modified
n-gram precision fails to evaluate
properly.

I Modified unigram precision is 1.0 and
modified bigram precision is 1.0 as
well.
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Experimental Results
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Experimental Results
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Experimental Results



41/45

Experimental Results
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Experimental Results
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Experimental Results
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Any Questions?



45/45

References I

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, Las Vegas, Nevada, USA, 2016.

D. P. Kingma and J. L. Ba. ADAM: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, California, USA, 2015.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), pages 311–318, 2002.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems (NeurIPS), volume 30, pages 5998–6008, Long Beach, California, USA, 2017.

Y. Wu and K. He. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), pages 3–19, 2018.


	Introduction
	Tasks
	Datasets
	A Machine Learning Model
	A Learning Algorithm
	Experimental Results
	References

