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The Transformer era has begun!
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Transformer

» Transformer has been introduced in the work
by Vaswani et al. [2017].

» Sequence modeling and sequence transduction
problems are solved in this paper.

» Language modeling and machine translation
are target applications of the vanilla
Transformer architecture.

» Following the modern sequence modeling
Figure 1: Sentinel Prime. scheme, it devises an encoder-decoder
architecture.

Figure 1 is taken from Wikipedia.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. Kaiser, and |. Polosukhin. Attention is alf'):’tgsTEEH
need. In Advances in Neural Information Processing Systems (NeurlPS), volume 30, pages 5998-6008, Long Beach, California, USA, 2017. 5/45



Today’s Lecture

> We will cover the tasks solved in this paper first.
» Then, we will study datasets for machine translation.

» Before introducing the Transformer model, we will visit traditional models for
sequence modeling.

» Eventually, we will study the Transformer model and a learning algorithm, used in
this paper.

» Finally, we will investigate the experimental results.
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Tasks
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Tasks

» The vanilla Transformer is used in solving a machine translation problem.

d ENGLISH KOREAN SPANISH v

DETECT LANGUAGE KOREAN ENGLISH SPANISH v -
This course is awesome! X O] A= YFBFILICH ¥
i koseuneun goengjanghabnida!
JUR D) 23/5,000 - LD} [m] ﬁq <
Send feedback

Figure 2: English to Korean Translation.

» The sentence given, “This course is awesome!” is tokenized as “this”, “course”,
“is” “awesome” . “I”
> After tokenization, each token is expressed as a one-hot encoded vector with a

vocabulary of tokens.
8/45

Figure 2 is taken from Google Translate.



Vocabulary of Tokens

this
course
is
awesome
!

(EOS)

Vocabulary of Tokens
(EOS) you they this it is  are course class greatawesome . ?
[ofoJofsJofoJofoJofoJofJoJofeol]
[ofoJofoJofoJofasJofoJofJoJofeol]
[ofoJofoJofsJofoJofoJofJoJofeol]
[ofoJofoJofoJofoJofoJrJoJofeol]
[ofoJofoJofoJofoJofJoJofJoJusfol]
[t loJofoJofoJofoJofoJofJoJofeol]

Figure 3: Tokenization of “This course is awesome!” .
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Datasets
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Datasets

> WMT 2014 English-German and English-French datasets are used.

» The standard WMT 2014 English-German dataset consists of about 4.5 million
sentence pairs.

» The WMT 2014 English-French dataset consists of 36 million sentence pairs.

» Each training batch contains a set of sentence pairs containing approximately
25,000 source tokens and 25,000 target tokens.
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A Machine Learning Model
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Recurrent Neural Networks
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Figure 4: Illustration of recurrent neural networks.

» [t is a class of neural networks, which has connections between nodes from a
directed graph along a sequence.

P It can learn a temporal dynamic behavior for a sequence.

» Long short-term memory (LSTM) and gated recurrent unit (GRU) have been
proposed.

POSTECH
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Recurrent Neural Networks
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Figure 5: Types of recurrent neural networks.

Taken from https://karpathy.github.io/2015/05/21/rnn-effectiveness/.
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https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sequence-to-Sequence Models

P A sequence-to-sequence model is designed as an encoder-decoder architecture.

> It is defined as a conditional language model, which is conditioned on the
previously-generated word sequence of target language and a sentence of source
language.

Encoder Decoder

|

This course is awesome!

Figure 6: Encoder-decoder architecture.
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Embedding Layer

One-hot encoding
A 4-dimensional embedding

06\@6\0*\ P ¥
the => 0/l0l010|1 cat => | 12| 01| 43|32
cat => 110(0/01|0 mat => |04 | 25|09 05
sat => | 0 | 0 | 0 ‘ 1 ‘ 0 ‘ on => |21 |03]|01|o4

Figure 7: One-hot encoding and a 4-dimensional embedding.

> It transforms a one-hot encoded vector to a d-dimensional embedding vector.

» This transformation is usually initialized at random.

POSTECH
Figure 7 is taken from this link. 17/45



https://www.tensorflow.org/text/guide/word_embeddings
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Positional Encoding

Depth

1000
Pasition

Figure 8: Visualization of positional
encoding.

Figure 8 is taken from this link.

The Transformer model does not contain
recurrence and convolution, even though it is
to model a sequence.

Thus, it requires the information about the
relative or absolution position of the tokens in
a sequence.

Positional encoding is defined as

: pos
PE(pos20) = 5it ( [gooairamar) - (1)

B pos
PE(positt) = 008 ({goaopims) @)

where pos is the position, i is the dimension,
and dpodel is the dimensionality of the model.
rosTecH
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https://www.tensorflow.org/text/tutorials/transformer
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Scaled Dot-Product Attention

» The input consists of queries and keys of

MatMul

Mask (opt.)

dimension dj, and values of dimension d,,.

It computes the dot products of the query with
all keys, divide each by v/d}, and apply a
softmax function to obtain the weights on the
values.

Finally, scaled dot-product attention is defined
as

Attention(Q, K, V) = soft <QKT> %
ention(Q, K, V) = softmax !
Vdy, )

where ), K, and V are query, key, and value

matrices, respectively. P
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Dot Product & Cosine Similarity

> Suppose that x,y € R are d-dimensional vectors.

» Dot product is defined as

x-y=x"y = ||y cos. (4)
» Cosine similarity is defined as
Xy
cosf = ———. (5)
[yl

0 = arccos(z-y/1z11y1)

Y

Figure 9: Illustration of dot product and cosine similarity. PR
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Why Does Scaled Dot-Product Attention Rescale by 1/+/d;?

Why 1 / sqrt(D) rescaling? And not 1 / D or something else?

Let query / key elements be unit Gaussians.
Qij ~N(0,1) K ~N(0,1)
Variance of product of two unit Gaussians.

2 ) — KT
Var(QuKy) =1 Therefore QKT — QTFE_

Variance of query / key inner product.

D
Var(Q;K]) = Var(};” QuKi;) = D
Standard deviation is then

Std(Q:K]) = /D

rosSTECH
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https://twitter.com/MishaLaskin/status/1479246928454037508

Multi-Head Attention

> Instead of performing a single attention function with
dmodel-dimensional keys, values, and queries, they are linearly
projected h times with different, learned linear projects to d, dg,
and d, dimensions, respectively.

» On each of these projected versions of queries, keys, and values,
the attention function is performed in parallel.

» Multi-head attention is defined as

MultiHead(Q, K, V) = Concat(heady, ..., head,)W®, (6)

where
head; = Attention(QWS, KWX vivY), (7)

WZQ € Rdmodel Xdp , WzK c Rdmodel Xdy, , WZV c Rdmodel Xdy , and
WO c ]thv X dmodel ] POSTECH
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Add & Norm

» It employs a residual connection [He et al., 2016] and and layer normalization:
LayerNorm(z + Sub-layer(z)), (8)

where Sub-layer is a sub-layer for applying some transformations.

Instance Norm Group Norm

Figure 10: Various normalization techniques.

POSTECH
Figure 10 is taken from [Wu and He, 2018]. 26/45



Position-wise Feed-Forward Networks

» Each of the layers in an encoder and a decoder contains a fully-connected
feed-forward network.

P It is applied to each position separately and identically.
> A position-wise feed-forward network (FFN) is defined as
FFN(QZ) = maX(O, Wi + b1)W2 + bo, (9)

where W, € RdmodeIXdFFN, by € RdFFN, Wy € RdFFNdeodel' and by € R%model
Note that max(0,x) is identical to ReLU(x).
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Output Probabilities

» Watch this video to check out how it works.
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https://lena-voita.github.io/resources/lectures/seq2seq/general/enc_dec_prob_idea.mp4

A Learning Algorithm
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Hardware & Schedule

» This model is trained on 8 NVIDIA P100 GPUs.

» The base model is trained for a total of 100,000 steps or 12 hours, where each
training step takes about 0.4 seconds.

» The big model is trained for 300,000 steps or 3.5 days, where each step takes
about 1.0 seconds.
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Optimizer & Regularization

Optimizer

» Adam optimizer [Kingma and Ba, 2015] with 31 = 0.9, 32 = 0.98, and ¢ = 10~
is used.

P A learning rate is scheduled as
learning_rate = dmodel min(t%°, tr719), (10)
at step ¢, where 7 is a warm-up step.
Regularization

» Residual dropout and label smoothing are used as regularization techniques.
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Experimental Results
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BLEU Score

» BLEU score [Papineni et al., 2002] is an evaluation metric for machine translation,
which is capable of replacing expensive human evaluations.

» It is defined as

N
BLEU = BP exp() _ wylogpn), (11)
n=1
where
1 if ¢ >,
BP = nesr (12)
exp(l —r/c) otherwise,

_ ZCECandidates Zn—gramec Countdip(n'gram)
ZC’ECandidates Zn—gram’GC’ Count(n—gram’) ’

Pn

wy, is a weight for n-gram. Note that ¢ and r are the length of the candidate

translation and the effective reference corpus length, respectively. POSTECH
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BLEU Score

Example 1.

Candidate 1: It is a guide to action which . .

ensures that the military always obeys > Two candidates might be all

the commands of the party. acceptable.

Candidate 2: It is to insure the troops

forever hearing the activity guidebook » However by Comparing to reference
that party direct. ! .

Reference 1: It is a guide to action that sentences, counting the number of
ensures that the military will forever shared words indicates Candidate 1 is
heed Party commands. good and Candidate 2 is bad.

Reference 2: It is the guiding principle

which guarantees the military forces . . . .
gner v » It implies that Candidate 1 is closer to
always being under the command of the

Party. the reference sentences than

Reference 3: It is the practical guide for Candidate 2.
the army always to heed the directions
of the party.

rPOSTECH
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BLEU Score

» Simple counting does not reflect the
quality of candidate sentence properly.

Example 2.

Candidate: the the the the the the the. » Thus, the number of shared words is
Reference 1: The cat is on the mat. clipped by the maximum count in each
Reference 2: There is a cat on the mat. of the reference sentences.

» Modified unigram precision is 2/7.

rPOSTECH
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BLEU Score

Example 3:

Candidate: of the » Since Candidate is too short compared

Reference I: It is a guide to action that to the reference sentences, modified
ensures that the military will forever

heed Party commands. n-gram precision fails to evaluate
Reference 2: It is the guiding principle properly.
which guarantees the military forces
always being under the command of the » Modified unigram precision is 1.0 and
Party. g . .. .

v modified bigram precision is 1.0 as

Reference 3: It is the practical guide for
the army always to heed the directions
of the party.

well.

rPOSTECH
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Experimental Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-1019 1.4-.10%
ConvS2S [9] 25.16 40.46 9.6-10® 1.5-10%
MoE [32] 26.03 40.56 2.0-101% 1.2-10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%0 1.1-10%
ConvS2S Ensemble [9] 26.36 4129 7.7-1019  1.2.10%
Transformer (base model) 273 38.1 3.3.10%8
Transformer (big) 284 41.8 2.3.10%°

rPOSTECH
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Experimental Results

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to
per-word perplexities.

train | PPL  BLEU params
N dmosa  dx  hodi dv Parop s steps | (dev) (dev)  x10°
base | 6 512 2048 8 64 64 0.1 0.1 100K | 492 258 65
1 512 512 5.29 249
) 4 128 128 500 255
16 32 32 491 258
32 16 16 501 254
16 516  25.1 58
® 32 501 254 60
2 6.11 237 36
4 519 253 50
8 488 255 80
©) 256 32 32 575 245 28
1024 128 128 466 260 168
1024 5.12 254 53
4096 475 262 90
0.0 577  24.6
0.2 495 255
® 0.0 467 253
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213

rosTeECH
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Experimental Results

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23

of WSJ)

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] | WSIJ only, discriminative 88.3
Petrov et al. (2006) [29] ‘WSJ only, discriminative 90.4
Zhu et al. (2013) [40] 'WSJ only, discriminative 90.4
Dyer et al. (2016) [8] ‘WSJ only, discriminative 91.7
Transformer (4 layers) 'WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 913
Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1
Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3

rPOSTECH
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Experimental Results
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color. POSTECH
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Experimental Results
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Experimental Results
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Any Questions?
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