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Bidirectional Encoder Representations from Transformers (BERT)

I BERT has been introduced in the work by Devlin et al. [2018].

I Unlike recent language representation models, it is designed to pre-train deep
bidirectional representations.

I It is trained by unlabeled text by jointly conditioning on both left and right
contexts.

I As a result, the pre-trained BERT model can be fine-tuned with just one
additional output layer to solve down-stream tasks.

[Devlin et al., 2018] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.
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Today’s Lecture

I We will cover the tasks and datasets solved in this paper first.

I Before introducing the BERT model, we will visit a bidirectional RNN model.

I Eventually, we will study the BERT model and the details of learning schemes,
used in this paper.

I Finally, we will investigate the experimental results.
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Tasks & Datasets
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Tasks & Datasets

I BERT is tested on four experimental circumstances:

1. General Language Understanding Evaluation (GLUE) benchmark;

2. Stanford Question Answering Dataset v1.1 (SQuAD v1.1);

3. Stanford Question Answering Dataset v2.0 (SQuAD v2.0);

4. Situations With Adversarial Generations (SWAG) dataset.
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General Language Understanding Evaluation (GLUE)

I The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

I MNLI

I The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of
sentence pairs with textual entailment annotations.

I Given a premise sentence and a hypothesis sentence, the task is to predict whether
the premise entails the hypothesis (entailment), contradicts the hypothesis
(contradiction), or neither (neutral).

I QQP

I The Quora Question Pairs dataset is a collection of question pairs from the
community question-answering website Quora.

I The task is to determine whether a pair of questions are semantically equivalent.
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General Language Understanding Evaluation (GLUE)

I The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

I QNLI

I The Stanford Question Answering Dataset is a question-answering dataset consisting
of question-paragraph pairs, where one of the sentences in the paragraph (drawn
from Wikipedia) contains the answer to the corresponding question (written by an
annotator).

I The authors convert the task into sentence pair classification by forming a pair
between each question and each sentence in the corresponding context, and filtering
out pairs with low lexical overlap between the question and the context sentence.

I The task is to determine whether the context sentence contains the answer to the
question.
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General Language Understanding Evaluation (GLUE)

I The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

I SST-2

I The Stanford Sentiment Treebank consists of sentences from movie reviews and
human annotations of their sentiment.

I The task is to predict the sentiment of a given sentence.
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Stanford Question Answering Dataset (SQuAD) v1.1 & v2.0

I SQuAD v1.1 [Rajpurkar et al., 2016] is
a collection of 100k crowdsourced
question and answer pairs.

I Given a question and a passage from
Wikipedia containing the answer, the
SQuAD v1.1 task is to predict the
answer text span in the passage.

I The SQuAD v2.0 [Rajpurkar et al.,
2018] task extends the SQuAD v1.1
problem definition by allowing for the
possibility that no short answer exists
in the provided paragraph, making the
problem more realistic.
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Situations With Adversarial Generations (SWAG)

I SWAG [Zellers et al., 2018] contains
113k sentence-pair completion
examples that evaluate grounded
common-sense inference.

I Given a sentence, the task is to choose
the most plausible continuation among
four choices.
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A Machine Learning Model
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Main Ideas

I Bidirectional representation: A left-to-right architecture, at which every token
can only attend to previous tokens, is limited, because some tasks require
incorporating context from both directions.

I Pre-training, then fine-tuning: It reduces the need for many heavily-engineered
task-specific architectures.
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Bidirectional Recurrent Neural Networks

Figure 1: Illustration of bidirectional recurrent neural networks.

I It has a recurrent connection, similar to the vanilla recurrent neural network.

I Compared to the vanilla recurrent neural network, a sequence of input instances is
processed by considering forward and backward directions.

Figure 1 is taken from [Schuster and Paliwal, 1997].

[Schuster and Paliwal, 1997] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11):
2673–2681, 1997.
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Transformer

Figure 2: Transformer.

Figure 2 is taken from [Vaswani et al., 2017].
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BERT
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BERT

I The BERT architecture is a multi-layer bidirectional Transformer encoder based
on the original implementation described in Vaswani et al. [2017].

I In this work, denote the number of layers (i.e., Transformer blocks) as L, the
hidden size as H, and the number of self-attention heads as A.

I BASE model: L = 12, H = 768, A = 12, Total Parameters = 110M.

I LARGE model: L = 24, H = 1024, A = 16, Total Parameters = 340M.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,  L. Kaiser, and I. Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 5998–6008, Long Beach, California, USA, 2017.
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Input Representations

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

I Both a single sentence and a pair of sentences, e.g., 〈Question, Answer〉 are
represented in one token sequence.

I The WordPiece embeddings with a 30,000 token vocabulary are used.

I Some special tokens, e.g., [SEP] and [CLS], exist.
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A Learning Scheme
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Pre-Training BERT

I BERT is pre-trained using two unsupervised tasks.

I Task #1 Masked Language Model: Simply mask some percentage of the input
tokens at random, and then predict those masked tokens.

I Task #2 Next Sentence Prediction: Given A and B sentences contiguously,
discriminate whether B is the next sentence of A, or not.
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Masked Language Model

I 15% of all WordPiece tokens are masked in each sequence at random.

I If some token is chosen, the selected token is replaced with the [MASK] token or a
random word, or unchanged.

I For example,

80% of the time: Replace the word with the [MASK] token

my dog is hairy → my dog is [MASK],

10% of the time: Replace the word with a random word

my dog is hairy → my dog is apple,

10% of the time: Keep the word unchanged

my dog is hairy → my dog is hairy.
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Next Sentence Prediction

I Many important down-stream tasks such as question answering and natural
language inference are based on understanding the relationship between two
sentences.

I For example,

Input: [CLS] the man went to [MASK] store [SEP] he bought a gallon

[MASK] milk [SEP]

Label: IsNext

or

Input: [CLS] the man [MASK] to the store [SEP] penguin [MASK] are

flight ##less birds [SEP]

Label: NotNext
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Pre-Training BERT

I Training of BERTBASE was performed on 4 Cloud TPUs in Pod configuration (16
TPU chips total).

I Training of BERTLARGE was performed on 16 Cloud TPUs (64 TPU chips total).

I Each pre-training took 4 days to complete.

I To speed up pre-training, the model is pre-trained with sequence length of 128 for
90% of the steps. Then, it is trained with sequence of 512 for the rest 10% of the
steps to learn the positional embeddings.
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Fine-Tuning BERT

I Fine-tuning is straightforward since the self-attention mechanism allows BERT to
model many downstream tasks.

I BERT uses the self-attention mechanism by encoding a concatenated text pair to
effectively include bidirectional cross attention between two sentences.

I For each task, we simply plug in the task-specific inputs and outputs into BERT
and fine-tune all the parameters end-to-end.

I All of the results in the paper can be replicated in at most 1 hour on a single Cloud
TPU, or a few hours on a GPU, starting from the exact same pre-trained model.
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Fine-Tuning BERT
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Experimental Results
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Any Questions?
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