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Bidirectional Encoder Representations from Transformers (BERT)

» BERT has been introduced in the work by Devlin et al. [2018].

» Unlike recent language representation models, it is designed to pre-train deep
bidirectional representations.

> It is trained by unlabeled text by jointly conditioning on both left and right
contexts.

» As a result, the pre-trained BERT model can be fine-tuned with just one
additional output layer to solve down-stream tasks.

[Devlin et al., 2018] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language PDSTEEH
understanding. arXiv preprint arXiv:1810.04805, 2018. 4/33



Today’s Lecture

» We will cover the tasks and datasets solved in this paper first.
» Before introducing the BERT model, we will visit a bidirectional RNN model.

» Eventually, we will study the BERT model and the details of learning schemes,
used in this paper.

» Finally, we will investigate the experimental results.
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Tasks & Datasets

> =

BERT is tested on four experimental circumstances:

General Language Understanding Evaluation (GLUE) benchmark;
Stanford Question Answering Dataset v1.1 (SQuAD v1.1);
Stanford Question Answering Dataset v2.0 (SQuAD v2.0);
Situations With Adversarial Generations (SWAG) dataset.
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General Language Understanding Evaluation (GLUE)

» The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

> MNLI

» The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of
sentence pairs with textual entailment annotations.

P Given a premise sentence and a hypothesis sentence, the task is to predict whether
the premise entails the hypothesis (entailment), contradicts the hypothesis
(contradiction), or neither (neutral).

> QQP

» The Quora Question Pairs dataset is a collection of question pairs from the
community question-answering website Quora.

» The task is to determine whether a pair of questions are semantically equivalent.
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General Language Understanding Evaluation (GLUE)

» The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

> QNLI

» The Stanford Question Answering Dataset is a question-answering dataset consisting
of question-paragraph pairs, where one of the sentences in the paragraph (drawn
from Wikipedia) contains the answer to the corresponding question (written by an
annotator).

» The authors convert the task into sentence pair classification by forming a pair
between each question and each sentence in the corresponding context, and filtering
out pairs with low lexical overlap between the question and the context sentence.

» The task is to determine whether the context sentence contains the answer to the
question.
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General Language Understanding Evaluation (GLUE)

» The GLUE benchmark [Wang et al., 2019] is a collection of diverse natural
language understanding tasks.

> SST-2

» The Stanford Sentiment Treebank consists of sentences from movie reviews and
human annotations of their sentiment.

» The task is to predict the sentiment of a given sentence.
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Stanford Question Answering Dataset (SQuAD) v1.1 & v2.0

» SQuAD v1.1 [Rajpurkar et al., 2016] is
. In meteorology, precipitation is any product
a COI IeCt|0n Of 100k CrOWdSOU rced of the condensation of atmospheric water vapor
q Uestion and answer pairs. that falls under gravity. The main forms of pre-

cipitation include drizzle, rain, sleet, snow, grau-

pel and hail... Precipitation forms as smaller
. . droplets coalesce via collision with other rain
> G|Ven d queSt|0n and a passage from drops or ice crystals within a cloud. Short, in-
o . . tense periods of rain in scattered locations are
Wikipedia containing the answer, the e s
SQUAD vll taSk Is to predlCt the What causes precipitation to fall?
answer text span in the passage. gravity
What is another main form of precipitation be-
. sides drizzle, rain, snow, sleet and hail?
» The SQuAD v2.0 [Rajpurkar et al., graupel
2018] task extends the SQUAD vl.1l Where do water droplets collide with ice crystals

to form precipitation?
within a cloud

problem definition by allowing for the
possibility that no short answer exists

In th € prOVIded paragrap h » Mma kl ng the SQuAD dataset. Each of the answers is a segment of text from
problem more realistic. the passage.

Figure 1: Question-answer pairs for a sample passage in the
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Situations With Adversarial Generations (SWAG)

On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.

» SWAG [Zel lers et al. , 20]_8] contains b) smiles with someone as the music plays.
. i c) is in the crowd, watching the dancers.
113 k sentence- pair com pletlon d) nervously sets her fingers on the keys.
exam ples that evaluate grou nded A girl is going across a set of monkey bars. She
. a) jumps up across the monkey bars.
common-sense inference. b) struggles onto the monkey bars to grab her head.

) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

» Given a sentence, the task is to choose The woman is now blow drying the dog, The dog

the most plausible continuation among a) is placed in the kennel next to a woman’s feet.
. b) washes her face with the shampoo.
fOU r choices. ¢) walks into frame and walks towards the dog.

d) tried to cut her face, so she is trying to do something
very close to her face.
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A Machine Learning Model
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Main ldeas

> Bidirectional representation: A left-to-right architecture, at which every token
can only attend to previous tokens, is limited, because some tasks require
incorporating context from both directions.

» Pre-training, then fine-tuning: It reduces the need for many heavily-engineered
task-specific architectures.
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Bidirectional Recurrent Neural Networks

FORWARD
STATES

BACKWAR]
STATES

t-1

Figure 1: Illustration of bidirectional recurrent neural networks.
» It has a recurrent connection, similar to the vanilla recurrent neural network.

» Compared to the vanilla recurrent neural network, a sequence of input instances is
processed by considering forward and backward directions.

Figure 1 is taken from [Schuster and Paliwal, 1997].

[Schuster and Paliwal, 1997] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing’,:ﬁﬁ)-.'—ecu
2673-2681, 1997. 15/33



Transformer
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Figure 2: Transformer.
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BERT

» The BERT architecture is a multi-layer bidirectional Transformer encoder based
on the original implementation described in Vaswani et al. [2017].

» In this work, denote the number of layers (i.e., Transformer blocks) as L, the
hidden size as H, and the number of self-attention heads as A.

» BASE model: L =12, H = 768, A = 12, Total Parameters = 110M.

» LARGE model: L =24, H = 1024, A = 16, Total Parameters = 340M.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. Kaiser, and |. Polosukhin. Attention is aII'):/’HSTEEH
need. In Advances in Neural Information Processing Systems (NeurlPS), volume 30, pages 5998-6008, Long Beach, California, USA, 2017. 18/33



Input Representations
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» Both a single sentence and a pair of sentences, e.g., (Question, Answer) are
represented in one token sequence.

> The WordPiece embeddings with a 30,000 token vocabulary are used.
» Some special tokens, e.g., [SEP] and [CLS], exist.
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Pre-Training BERT

» BERT is pre-trained using two unsupervised tasks.

> Task #1 Masked Language Model: Simply mask some percentage of the input
tokens at random, and then predict those masked tokens.

> Task #2 Next Sentence Prediction: Given A and B sentences contiguously,
discriminate whether B is the next sentence of A, or not.
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Masked Language Model

» 15% of all WordPiece tokens are masked in each sequence at random.

> |If some token is chosen, the selected token is replaced with the [MASK] token or a
random word, or unchanged.

> For example,
80% of the time: Replace the word with the [MASK] token
my dog is hairy — my dog is [MASK],
10% of the time: Replace the word with a random word
my dog is hairy — my dog is apple,

10% of the time: Keep the word unchanged

my dog is hairy — my dog is hairy.
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Next Sentence Prediction

> Many important down-stream tasks such as question answering and natural
language inference are based on understanding the relationship between two
sentences.

> For example,

Input: [CLS] the man went to [MASK] store [SEP] he bought a gallon
[MASK] milk [SEP]

Label: IsNext
or

Input: [CLS] the man [MASK] to the store [SEP] penguin [MASK] are
flight ##less birds [SEP]

Label: NotNext POSTECH
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Pre-Training BERT

» Training of BERTpasE was performed on 4 Cloud TPUs in Pod configuration (16
TPU chips total).

» Training of BERT1Argr was performed on 16 Cloud TPUs (64 TPU chips total).
» Each pre-training took 4 days to complete.

» To speed up pre-training, the model is pre-trained with sequence length of 128 for
90% of the steps. Then, it is trained with sequence of 512 for the rest 10% of the
steps to learn the positional embeddings.

rPOSTECH
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Fine-Tuning BERT

» Fine-tuning is straightforward since the self-attention mechanism allows BERT to
model many downstream tasks.

> BERT uses the self-attention mechanism by encoding a concatenated text pair to
effectively include bidirectional cross attention between two sentences.

» For each task, we simply plug in the task-specific inputs and outputs into BERT
and fine-tune all the parameters end-to-end.

» All of the results in the paper can be replicated in at most 1 hour on a single Cloud
TPU, or a few hours on a GPU, starting from the exact same pre-trained model.

rPOSTECH
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Fine-Tuning BERT

Class Class
Label Label
B F S

Sentence 1 Sentence 2 Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, CoLA
RTE, SWAG

Start/End Span

Question Paragraph Single Sentence
(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQUAD v1.1 CoNLL-2003 NER POSTECH
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Experimental Results
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Experimental Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAlI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERT3AsE 84.6/83.4 712 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.> BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.
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Experimental Results

System Dev Test
EM F1 EM Fl
Top Leaderboard Systems (Dec 10th, 2018)

Human - - 823 912

#1 Ensemble - nlnet - - 86.0 91.7

#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 856 - 858
R.M. Reader (Ensemble) 81.2 87.9 823 88.5
Ours

BERTgask (Single) 80.8 885 - -

BERTLARGE (Single) 84.1 90.9 - -

BERTLarce (Ensemble) 85.8 91.8 - -

BERT 1 ArGE (Sg1+Tr1V1aQA) 84.2
BERTLARGE (EIlS.+T1’iViaQA) 86.2

91.1 851 918
92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-

points and fine-tuning seeds.

System Dev Test
EM F1 EM Fl
Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 748 78.0
#2 Single - nlnet - - 742 771
Published
unet (Ensemble) - - 714 749
SLQA+ (Single) - 714 744
Ours
BERTLarcE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that

use BERT as one of their components.
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Experimental Results

System Dev Test
ESIM+GloVe 519 527
ESIM+ELMo 59.1 59.2
OpenAl GPT - 178.0
BERTgAsE 81.6 -

BERTLARGE 86.6 86.3
Human (expert)’ - 850
Human (5 annotations)t - 88.0

Table 4: SWAG Dev and Test accuracies. THuman per-
formance is measured with 100 samples, as reported in

the SWAG paper.

rPOSTECH
30/33



Experimental Results

Dev Set
Tasks MNLI-m QNLI MRPC SST-2 SQuAD
(Acc) (Acc) (Acc) (Acc) (F1)
BERTEgAsE 84.4 884 86.7 927 88.5
No NSP 83.9 849 86.5 926 87.9

LTR & NoNSP  82.1 843 775 921 71.8
+ BiLSTM 82.1 84.1 757 916 84.9

Table 5: Ablation over the pre-training tasks using the
BERTgasg architecture. “No NSP” is trained without
the next sentence prediction task. “LTR & No NSP” is
trained as a left-to-right LM without the next sentence
prediction, like OpenAl GPT. “+ BiLSTM” adds a ran-
domly initialized BiLSTM on top of the “LTR + No
NSP” model during fine-tuning.
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Any Questions?
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