XLNet, RoBERTa, DistilBERT, T5, Turing-NLG [CSED490X] Recent Trends in ML: A Large-Scale Perspective

Jungtaek Kim

jtkim@postech.ac.kr

POSTECH Pohang 37673, Republic of Korea https://jungtaek.github.io

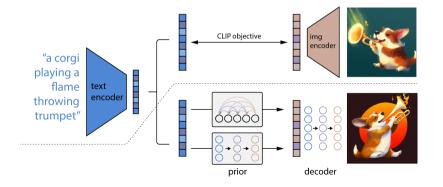
April 20, 2022

DALL·E 2

▶ OpenAl DALL·E 2 has been released on April 6, 2022.

▶ DALL·E 2 is able to create realistic images from a description in natural language.

▶ In addition, it can edit exiting images by providing a natural language caption.



vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

DALL·E 2

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

DALL·E 2

a dolphin in an astronaut suit on saturn, artstation

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

a teddy bear on a skateboard in times square

Table of Contents

XLNet: Generalized Autoregressive Pretraining for Language Understanding

RoBERTa: A Robustly Optimized BERT Pretraining Approach

DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Turing-NLG

XLNet: Generalized Autoregressive Pretraining for Language Understanding

XLNet

- Denoising autoencoding-based pretraining, e.g., BERT, achieves better performance than pretraining methods based on autoregressive language modeling.
- However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy.
- Instead of using a fixed forward or backward factorization order as in conventional autoregressive models, XLNet maximizes the expected log likelihood of a sequence w.r.t. all possible permutations of the factorization order.
- As a generalized autoregressive language model, XLNet does not rely on data corruption, e.g., a mask token, [MASK].
- XLNet integrates two important techniques in Transformer-XL [Dai et al., 2019]. the relative positional encoding scheme and the segment recurrence mechanism.

[[]Yang et al., 2019] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, XLNet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, Vancouver, British Columbia, Canada, 2019,

[[]Dai et al., 2019] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-XL: Attentive language models bevold 🖙 🖛 fixed-length context. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

XLNet

Model	SQuAD1.1	SQuAD2.0	RACE	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
BERT-Large (Best of 3)	86.7/92.8	82.8/85.5	75.1	87.3	93.0	91.4	74.0	94.0	88.7	63.7	90.2
XLNet-Large wikibooks	- 88.2/94.0	85.1/87.8	77.4	88.4	93.9	91.8	81.2	94.4	90.0	65.2	91.1

Table 1: Fair comparison with BERT. All models are trained using the same data and hyperparameters as in BERT. We use the best of 3 BERT variants for comparison; i.e., the original BERT, BERT with whole word masking, and BERT without next sentence prediction.

RoBERTa: A Robustly Optimized BERT Pretraining Approach

- The authors present a replication study of BERT pre-training, which includes a careful evaluation of the effects of hyperparmeter tuning and training set size.
- They find that BERT was significantly undertrained and propose an improved recipe for training BERT models.
- The modifications include: (i) training the model longer, with bigger batches, over more data; (ii) removing the next sentence prediction objective; (iii) training on longer sequences; and (iv) dynamically changing the masking pattern applied to the training data.
- They also collect a large new dataset (CC-News) of comparable size to other privately used datasets, to better control for training set size effects.

[[]Liu et al., 2019] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. RoBERTa: A rouse 12/30 optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE					
Our reimplementation (with NSP loss):									
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2					
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0					
Our reimplementation (without NSP loss):									
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8					
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6					
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3					
$XLNet_{BASE}$ (K = 7)	-/81.3	85.8	92.7	66.1					
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7					

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m, SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERT_{BASE} and XLNet_{BASE} are from Yang et al. (2019).

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2	
RoBERTa							
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3	
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6	
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1	
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4	
BERTLARGE							
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7	
XLNet _{LARGE}							
with BOOKS + WIKI	13GB	256	$1\mathbf{M}$	94.0/87.8	88.4	94.4	
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6	

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB \rightarrow 160GB of text) and pretrain for longer (100K \rightarrow 300K \rightarrow 500K steps). Each row accumulates improvements from the rows above. RoBERTa matches the architecture and training objective of BERT_{LARGE}. Results for BERT_{LARGE} and XLNet_{LARGE} are from Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the Appendix.

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. $BERT_{LARGE}$ and $XLNet_{LARGE}$ results are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoBERTa results on the development set are a median over five runs. RoBERTa results on the test set are ensembles of *single-task* models. For RTE, STS and MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained from the GLUE leaderboard.

DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter

DistilBERT



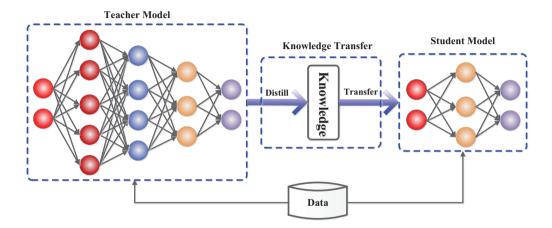
POSTECH MANGE DAMAGERITY OF SCHWER AND INCOMPLICATION 16/30

DistilBERT

- ▶ The trend toward bigger models raises two concerns:
 - First is the environmental cost of exponentially scaling the computational requirements.
 - Second, the growing computational and memory requirements may hamper the potential to enable novel and interesting applications for on-device real-time language processing.
- In this paper, it is possible to reach similar performances on many downstream tasks using much smaller language models pre-trained with knowledge distillation, resulting in models that are lighter and faster at inference time.
- The general-purpose pre-trained models can be fine-tuned with good performances on several downstream tasks, keeping the flexibility of larger models.

[[]Sanh et al., 2019] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter 17/30 preprint arXiv:1910.01108, 2019.

Knowledge Distillation



[[]Gou et al., 2021] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

Taken from [Gou et al., 2021].

DistilBERT

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1		53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8		69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2		59.9	91.3	86.9	56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

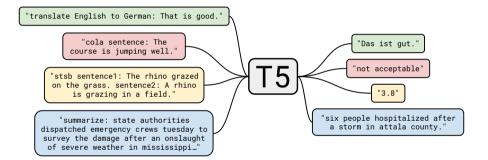
Table 3: **DistilBERT is significantly smaller** while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

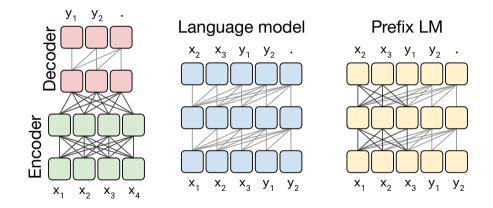
Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

- Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing.
- In this paper, the authors explore the landscape of transfer learning techniques for natural language processing.
- They introduce a unified framework that converts all text-based language problems into a text-to-text format.
- ▶ A new dataset "Colossal Clean Crawled Corpus (C4)" is also introduced.

[[]Raffel et al., 2020] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of Reference of Machine Learning Research, 21:1–67, 2020. 21/30





Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <v> week . Thank you <x> to <y> week .</y></x></v></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) (x) for inviting Y last Z for inviting last X for inviting me Y your party last Z

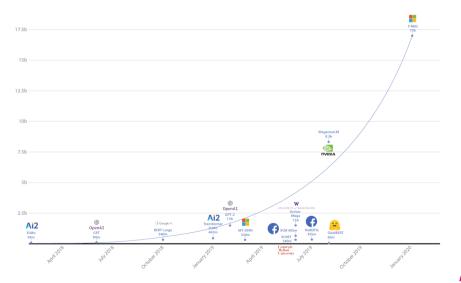
Figure 1: Original sentence is "Thank you for inviting me to your party last week .".

Model	GLUE Average	CoLA Matthew	SST-2 s Accurac		MRPC Accuracy	STS-B Pearson	STS-B Spearman
Model				•			
Previous best	89.4^{a}	69.2^{b}	97.1 ^a		91.5 ^b	92.7 ^b	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP		MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1 A	ccuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2 ^a	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92.2	91.9	96.9	92.8	94.5
	SQuAD	SQuAD	SuperGL	UE Bool	Q CB	CB	COPA
Model	EM	F1	Average	e Accura	icy F1	Accuracy	Accuracy
Previous best		95.5^{α}	84.6^{d}	87.1	^d 90.5 ^d	95.2^{d}	90.6^{d}
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9		94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8
	MultiRC	MultiRC	ReCoRD		RTE	WiC	WSC
Model	F1a	$\mathbf{E}\mathbf{M}$	F1	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	84.4^{d}	52.5^{d}	90.6^{d}	90.0 ^d	88.2^{d}	69.9^{d}	89.0 ^d
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.1	63.3	94.1	93.4	92.5	76.9	93.8
	WMT EnD	e WMT	EnFr WM	IT EnRo	CNN/DM	CNN/DM	CNN/DM
Model	BLEU	BLI	EU	BLEU	ROUGE-1	ROUGE-2	ROUGE-I
revious best	33.8°	43	8 ^e	38.5 ^f	43.47^{g}	20.30^{g}	40.63^{g}
C5-Small	26.7	36.	.0	26.8	41.12	19.56	38.35
C5-Base	30.9	41.	.2	28.0	42.05	20.34	39.40
C5-Large	32.0	41	5	28.1	42.50	20.68	39.75
F5-3B	31.8	42.	.6	28.2	42.72	21.02	39.94
F5-11B	32.1	43.	4	28.1	43.52	21.55	40.69

POSTREH VANNE UNIVERSITY OF SCIENCE AND ITCANALLEY 25/30

Turing-NLG

Turing-NLG



POSTECH POMMES UNDERSTY OF SCIENCE AND ITCANAILOSY 27/30

Turing-NLG

► Turing-NLG is a 17 billion parameter language model by Microsoft.

- It is a Transformer-based generative language model, which has 78 Transformer layers with a hidden size of 4256 and 28 attention heads.
- It is implemented by a framework, named DeepSpeed, which is developed by Microsoft.
- Similar to other models, it is fine-tuned on downstream tasks, after pre-training the Turing-NLG model.

Details of Turing-NLG is available at this link.

Any Questions?

References I

- Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.
- J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey. International Journal of Computer Vision, 129(6):1789-1819, 2021.
- Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
- C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21:1–67, 2020.
- V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.
- Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. XLNet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, Vancouver, British Columbia, Canada, 2019.

