Vision Transformer & Swin Transformer [CSED490X] Recent Trends in ML: A Large-Scale Perspective

Jungtaek Kim

jtkim@postech.ac.kr

POSTECH Pohang 37673, Republic of Korea https://jungtaek.github.io

April 27, 2022

Table of Contents

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Today's Lecture

- Variants of the Transformer model [Vaswani et al., 2017] for vision tasks will be covered.
- Vision Transformer and Swin Transformer will be introduced.
- Unlike the language models covered in the previous lectures, it solves a task related to visual information, e.g., image classification.
- Image is generally represented as $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$, where H and W are height and width of image, respectively, and C is channel size. If \mathbf{x} is a grayscale image, C = 1, and if \mathbf{x} is a colored image, C = 3.

[[]Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is al Restriction reed. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 5998–6008, Long Beach, California, USA, 2017. 3/39

Why Is Computer Vision Impactful?

Object detection

Taken from Wikipedia.

Why Is Computer Vision Impactful?

Object detection

Taken from Wikipedia.

Why Is Computer Vision Impactful?

Video tracking

Taken from Wikipedia.

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Vision Transformer (ViT)

- While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited.
- In vision, convolutional neural networks are widely used, but the reliance on convolutional neural networks is not necessary.
- A pure transformer applied directly to sequences of image patches can perform very well on image classification tasks.
- When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks, Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional neural networks.

[[]Dosovitskiy et al., 2021] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the International Conference on Learning Representations (ICLR), Virtual, 2021. 8/39

Tasks & Datasets

Taken from https://cs231n.github.io.

ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

Figure 1: Examples of ILSVRC2012.

- It is to solve tasks for classification, classification with localization, and fine-grained classification.
- #Classes: 1,000
- #Training: 1,281,167
- #Validation: 50,000
- ▶ #Test: 100,000
- Details can be found in this link.

- ImageNet-21k and JFT-300M datasets are used to pre-train the ViT model.
- Diverse datasets for image classification are tested.
- In particular, Visual Task Adaptation Benchmark (VTAB) is used to evaluate models.

Visual Task Adaptation Benchmark (VTAB)

VTAB contains the following 19 tasks:

Caltech101, CIFAR-100, CLEVR distance prediction, CLEVR counting, Diabetic Rethinopathy, Dmlab Frames, dSprites orientation prediction, dSprites location prediction, Describable Textures Dataset (DTD), EuroSAT, KITTI distance prediction, 102 Category Flower Dataset, Oxford IIIT Pet dataset, PatchCamelyon, Resisc45, Small NORB azimuth prediction, Small NORB elevation prediction, SUN397, SVHN.

This benchmark expects a pre-trained model as an input.

Figure 2 is taken from this link.

Visual Task Adaptation Benchmark (VTAB)

Vision Transformer (ViT)

POSTECH VOLUME LANSIELLY OF SCIENCE AND TECHNOLOGY 14/39

Vision Transformer (ViT)

- ▶ The standard Transformer receives as input a 1D sequence of token embeddings.
- ▶ To handle 2D images, the image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ is reshaped into a sequence of flattened 2D patches $\mathbf{x}_p \in \mathbb{R}^{N \times (P^2C)}$, where (H, W) is the resolution of image, C is the number of channels, (P, P) is the resolution of each image patch.

• Note that
$$N = HW/P^2$$
.

- ▶ The Transformer uses constant latent vector size *D* through all of its layers, so the flattened patches are mapped to *D* dimensions with a trainable linear projection.
- ► Similar to BERT's [class] token, it prepends a learnable embedding to the sequence of embedded patches (z₀⁰ = x_{class}), whose state at the output of the Transformer encoder (z_L⁰) serves as the image representation y.
- \blacktriangleright Both during pre-training and fine-tuning, a classification head is attached to \mathbf{z}_{L}^{0} .

Inductive Bias of ViT

- ViT has much less image-specific inductive bias than convolutional neural networks.
- In convolutional neural networks, locality, two-dimensional neighborhood structure, and translation equivariance are baked into each layer throughout the whole model.
- On the contrary, in ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global.
- The two-dimensional neighborhood structure is used very sparingly; in the beginning of the model by cutting the image into patches and at fine-tuning time for adjusting the position embeddings for images of different resolution.
- The position embeddings at initialization time carry no information about the 2D positions of the patches and all spatial relations between the patches have to be learned from scratch.

Fine-Tuning and Higher Resolution

- ▶ ViT is pre-trained on large datasets and fine-tuned to (smaller) downstream tasks.
- ▶ The pre-trained prediction head is removed and attached a zero-initialized *D* × *K* feedforward layer, where *K* is the number of downstream classes.
- When feeding images of higher resolution, it keeps the patch size the same, which results in a larger effective sequence length.
- Since the pre-trained position embeddings may no longer be meaningful, 2D interpolation of the pre-trained position embeddings is performed.

Details of ViT Model Variants

Table 1: Details of Vision Transformer model variants.

Model	Layers	Hidden size	MLP size	Heads	Parameters
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

A Learning Algorithm

- An Adam optimizer [Kingma and Ba, 2015] is used with $\beta_1 = 0.9$ and $\beta_2 = 0.999$.
- A batch size is 4096.
- ► A linear learning rate warmup and decay are used.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^{*}$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported in Touvron et al. (2020).

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

Figure 3: Transfer to ImageNet. While large ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, they shine when pre-trained on larger datasets. Similarly, larger ViT variants overtake smaller ones as the dataset grows. Figure 4: Linear few-shot evaluation on ImageNet versus pre-training size. ResNets perform better with smaller pre-training datasets but plateau sooner than ViT, which performs better with larger pre-training. ViT-b is ViT-B with all hidden dimensions halved.

Figure 5: Performance versus pre-training compute for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

- This paper presents a new Vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision.
- The authors propose a hierarchical Transformer whose representation is computed with Shifted windows.
- The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.
- This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size.

[[]Liu et al., 2021] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer: Hierarchical vision transformer using structure windows. In Proceedings of the International Conference on Computer Vision (ICCV), pages 10012–10022, Virtual, 2021. 25/39

Tasks & Datasets

Figure 3: Comparisons of classification + localization, object detection, semantic segmentation, and instance segmentation.

Three tasks are solved in this paper:

- image classification on ImageNet-1K;
- object detection on COCO 2017;
- semantic segmentation on ADE20K.

Figure 3 is taken from this link.

Object Detection on COCO 2017

Taken from this link.

Semantic Segmentation on ADE20K

Taken from this link.

(a) Regular ImageNet-1K trained models									
method	image	#param.	FLOPs	throughput	ImageNet				
	size	1		(image / s)	top-1 acc.				
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0				
RegNetY-8G [48]	224^{2}	39M	8.0G	591.6	81.7				
RegNetY-16G [48]	224^{2}	84M	16.0G	334.7	82.9				
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6				
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9				
EffNet-B5 [58]	456^{2}	30M	9.9G	169.1	83.6				
EffNet-B6 [58]	528^{2}	43M	19.0G	96.9	84.0				
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3				
ViT-B/16 [20]	384^{2}	86M	55.4G	85.9	77.9				
ViT-L/16 [20]	384^{2}	307M	190.7G	27.3	76.5				
DeiT-S [63]	224^{2}	22M	4.6G	940.4	79.8				
DeiT-B [63]	224^{2}	86M	17.5G	292.3	81.8				
DeiT-B [63]	384^{2}	86M	55.4G	85.9	83.1				
Swin-T	224^{2}	29M	4.5G	755.2	81.3				
Swin-S	$ 224^2 $	50M	8.7G	436.9	83.0				
Swin-B	224^{2}	88M	15.4G	278.1	83.5				
Swin-B	384 ²	88M	47.0G	84.7	84.5				

POSTECH VOIMME LINNERSITY OF SCIENCE AND TECHNILLEY 33/39

(b) ImageNet-22K pre-trained models									
mathad	image	#====	EI ODa	throughput	ImageNet				
method	size ^{#param.}		FLOFS	(image / s)	top-1 acc.				
R-101x3 [38]	384 ²	388M	204.6G	-	84.4				
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4				
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0				
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2				
Swin-B	224^{2}	88M	15.4G	278.1	85.2				
Swin-B	384^{2}	88M	47.0G	84.7	86.4				
Swin-L	384 ²	197M	103.9G	42.1	87.3				

(a) Various frameworks									
Method Back		Backb	one	APbox	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#param	FLOPs	FPS
Casca	de	R-5	0	46.3	64.3	50.5	82M	739G	18.0
Mask R-	CNN	Swir	-T	50.5	69.3	54.9	86M	745G	15.3
ATS	c	R-5	0	43.5	61.9	47.0	32M	205G	28.3
AIS	3	Swin-T		47.2	66.5	51.3	36M	215G	22.3
DonDoin	toV2	R-5	0	46.5	64.6	50.3	42M	274G	13.6
Reprom	us v Z	Swin	I-T	50.0	68.5	54.2	45M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	106M	166G	21.0
R-CN	IN	Swir	I-T	47.9	67.3	52.3	110M	172G	18.4
(b)	Vario	us bac	kbo	nes w	. Casc	ade M	ask R-C	NN	
	AP ^{boy}	AP ₅₀	AP_7^b	$_{5}^{\text{ox}} \text{AP}^{n}$	ask AP	$^{\text{nask}}_{50} \text{AP}^{1}_{50}$	^{mask} para	nFLOP	sFPS
DeiT-S [†]	48.0	67.2	51.	7 41.	4 64	.2 44	.3 80M	1 889G	10.4
R50	46.3	64.3	50.:	5 40.	1 61	.7 43	8.4 82M	1 739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	'.1 86M	1 745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	5.2 101N	A 819G	12.8
Swin-S	51.8	70.4	56.	3 44.	7 67	.9 48	8.5 107N	A 838G	12.0
X101-64	48.3	66.4	52.3	3 41.	7 64	.0 45	5.1 140N	A 972G	10.4
Swin-B	51.9	70.9	56.	5 45.	0 68	.4 48	3.7 145N	A 982G	11.6

POSTECH POMAGE UNIVERSITY OF SCIENCE AND TROMBILDEN 35/39

(c) System-level Comparison							
Method	mini-val		test-dev		#param.	FLOPs	
	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}	"Puluin	12010	
RepPointsV2* [12]	-	-	52.1	-	-	-	
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G	
RelationNet++* [13]	-	-	52.7	-	-	-	
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G	
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-	
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G	
DetectoRS* [46]	-	-	55.7	48.5	-	-	
YOLOv4 P7* [4]	-	-	55.8	-	-	-	
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G	
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G	
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G	
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G	
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-	

POSTECH POMMES UNDERSTY OF SCIENCE AND ITCANALLOSY 36/39

ADE20K		val	test	thorom	FI OP	EDC
Method	Backbone	mIoU	score	#param.	FLOFS	rrs
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	$\mathbf{Swin} \cdot \mathbf{B}^{\ddagger}$	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

POSTECH POMMES UNDERSTY OF SCIENCE AND ITCANAILOSY 37/39

Any Questions?

References I

- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *Proceedings of the International Conference on Learning Representations (ICLR)*, Virtual, 2021.
- D. P. Kingma and J. L. Ba. ADAM: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, California, USA, 2015.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the International Conference on Computer Vision (ICCV), pages 10012–10022, Virtual, 2021.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 5998–6008, Long Beach, California, USA, 2017.