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Today’s Lecture

» Variants of the Transformer model [Vaswani et al., 2017] for vision tasks will be
covered.

» Vision Transformer and Swin Transformer will be introduced.

» Unlike the language models covered in the previous lectures, it solves a task
related to visual information, e.g., image classification.

> Image is generally represented as x € RE*WXC \where H and W are height and
width of image, respectively, and C' is channel size. If x is a grayscale image,
C' =1, and if x is a colored image, C' = 3.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. Kaiser, and |. Polosukhin. Attention is aII’?HSTEEH
need. In Advances in Neural Information Processing Systems (NeurlPS), volume 30, pages 5998-6008, Long Beach, California, USA, 2017. 3/39



Why Is Computer Vision Impactful?

» Object detection
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Why Is Computer Vision Impactful?
» Video tracking
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An Image is Worth 16x16 Words:
Transformers for Image Recognition at
Scale
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Vision Transformer (ViT)

» While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited.

P In vision, convolutional neural networks are widely used, but the reliance on
convolutional neural networks is not necessary.

P> A pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks.

» When pre-trained on large amounts of data and transferred to multiple mid-sized
or small image recognition benchmarks, Vision Transformer (ViT) attains
excellent results compared to state-of-the-art convolutional neural networks.

[Dosovitskiy et al., 2021] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. H,ii;OId S.
Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the Inte aﬂﬁlTEEH
Conference on Learning Representations (ICLR), Virtual, 2021. 8/39


https://arxiv.org/abs/2010.11929

Tasks & Datasets
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https://cs231n.github.io

ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012)

> It is to solve tasks for classification,
classification with localization, and
fine-grained classification.

> #C(Classes: 1,000

> #Training: 1,281,167

> #Validation: 50,000

> #Test: 100,000

Figure 1: Examples of ILSVRC2012. » Details can be fOUnd in this link.

Figure 1 is taken from https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=imagenet2012. 10/39


https://image-net.org/challenges/LSVRC/2012/index
https://knowyourdata-tfds.withgoogle.com/#tab=STATS&dataset=imagenet2012

Tasks & Datasets

> ImageNet-21k and JFT-300M datasets are used to pre-train the ViT model.
» Diverse datasets for image classification are tested.

» In particular, Visual Task Adaptation Benchmark (VTAB) is used to evaluate
models.

11/39



Visual Task Adaptation Benchmark (VTAB)

» VTAB contains the following 19 tasks:

Caltech101, CIFAR-100, CLEVR distance 18 e T\T“
prediction, CLEVR counting, Diabetic ’:/% E— \2 \
Rethinopathy, Dmlab Frames, dSprites orientation S .o i S— — 6' “‘

prediction, dSprites location prediction,
Describable Textures Dataset (DTD), EuroSAT,
KITTI distance prediction, 102 Category Flower

ad)

Upstream
Data

¥

|

Dataset, Oxford IlIT Pet dataset, PatchCamelyon,
Resisc45, Small NORB azimuth prediction, Small
NORB elevation prediction, SUN397, SVHN.

wpLoB)y uoneydepy

» This benchmark expects a pre-trained Figure 2: VTAB protocol.
model as an input.
rosTecH
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https://ai.googleblog.com/2019/11/the-visual-task-adaptation-benchmark.html

Visual Task Adaptation Benchmark (VTAB)
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Vision Transformer (ViT)

>

>

The standard Transformer receives as input a 1D sequence of token embeddings.

To handle 2D images, the image x € R¥*WX*C s reshaped into a sequence of
flattened 2D patches x, € RNX(P*C) \where (H, W) is the resolution of image, C
is the number of channels, (P, P) is the resolution of each image patch.

Note that N = HW/P2.

The Transformer uses constant latent vector size D through all of its layers, so the
flattened patches are mapped to D dimensions with a trainable linear projection.

Similar to BERT's [class] token, it prepends a learnable embedding to the

sequence of embedded patches (z) = Xlass), Whose state at the output of the

Transformer encoder (zOL) serves as the image representation y.

Both during pre-training and fine-tuning, a classification head is attached to zOL.
POSTECH
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Inductive Bias of ViT

» ViT has much less image-specific inductive bias than convolutional neural
networks.

» In convolutional neural networks, locality, two-dimensional neighborhood
structure, and translation equivariance are baked into each layer throughout the
whole model.

» On the contrary, in ViT, only MLP layers are local and translationally equivariant,
while the self-attention layers are global.

P> The two-dimensional neighborhood structure is used very sparingly; in the
beginning of the model by cutting the image into patches and at fine-tuning time
for adjusting the position embeddings for images of different resolution.

» The position embeddings at initialization time carry no information about the 2D
positions of the patches and all spatial relations between the patches have to be

learned from scratch. POSTECH
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Fine-Tuning and Higher Resolution

» ViT is pre-trained on large datasets and fine-tuned to (smaller) downstream tasks.

» The pre-trained prediction head is removed and attached a zero-initialized D x K
feedforward layer, where K is the number of downstream classes.

» When feeding images of higher resolution, it keeps the patch size the same, which
results in a larger effective sequence length.

» Since the pre-trained position embeddings may no longer be meaningful, 2D
interpolation of the pre-trained position embeddings is performed.
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Details of ViT Model Variants

Table 1: Details of Vision Transformer model variants.

Model Layers Hidden size MLP size Heads Parameters

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M
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A Learning Algorithm

» An Adam optimizer [Kingma and Ba, 2015] is used with 51 = 0.9 and 82 = 0.999.
» A batch size is 4096.

» A linear learning rate warmup and decay are used.
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Experimental Results

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72 +0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 -
Oxford-IIIT Pets 97.56 £0.03 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61+0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+023 76.28+046 72.72+0.21 76.29 +1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported

in Touvron et al. (2020).
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Experimental Results
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Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.
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Experimental Results
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Experimental Results
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Figure 5: Performance versus pre-training compute for different architectures: Vision Transformers,
ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same compu-
tational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap

vanishes for larger models.

23/39



Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows
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Swin Transformer

» This paper presents a new Vision Transformer, called Swin Transformer, that
capably serves as a general-purpose backbone for computer vision.

» The authors propose a hierarchical Transformer whose representation is computed
with Shifted windows.

» The shifted windowing scheme brings greater efficiency by limiting self-attention
computation to non-overlapping local windows while also allowing for
cross-window connection.

» This hierarchical architecture has the flexibility to model at various scales and has
linear computational complexity with respect to image size.

[Liu et al., 2021] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin Transformer: Hierarchical vision transformer usil’g’ﬂﬁTEEH
windows. In Proceedings of the International Conference on Computer Vision (ICCV), pages 10012-10022, Virtual, 2021. 25/39


https://arxiv.org/abs/2103.14030

Tasks & Datasets

Sheep 2

Classification + Localization

Semantic Segmentation Instance Segmentation

Figure 3: Comparisons of classification +
localization, object detection, semantic
segmentation, and instance segmentation.

Figure 3 is taken from this link.

P> Three tasks are solved in this paper:

P image classification on ImageNet-1K;
» object detection on COCO 2017;

P semantic segmentation on ADE20K.
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https://towardsdatascience.com/detection-and-segmentation-through-convnets-47aa42de27ea

Object Detection on COCO 2017

POSTECH
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https://cocodataset.org/#detection-2017

Semantic Segmentation on ADE20K
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https://github.com/CSAILVision/ADE20K

Swin Transformer
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Swin Transformer
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Swin Transformer

Layer 1

Layer 1+1

A local window to
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Swin Transformer
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Experimental Results

(a) Regular ImageNet-1K trained models

method image #param. FLOPs tlllroughput agc et

size (image / s) {top-1 acc.
RegNetY-4G [7] [ 224> 2IM 4.0G 1156.7 80.0
RegNetY-8G [49] [ 2242 39M 8.0G  591.6 81.7
RegNetY-16G [47]| 224> 84M 16.0G  334.7 82.9
EffNet-B3 [°¢] [300®° 12M 1.8G  732.1 81.6
EffNet-B4 [2] |380% 19M 42G  349.4 82.9
EffNet-B5 [59] |456%2 30M 99G  169.1 83.6
EffNet-B6 [°9] [528%2 43M 19.0G  96.9 84.0
EffNet-B7 [59] | 600> 66M 37.0G  55.1 84.3
VIT-B/16 [20] |384%2 86M 554G  85.9 77.9
VIiT-L/16 [20] |3842 307M 190.7G  27.3 76.5
DeiT-S [07] [2242 22M  4.6G  940.4 79.8
DeiT-B [03] |2242 86M 17.5G  292.3 81.8
DeiT-B [03] |3842 86M 554G 85.9 83.1
Swin-T 2242 29M 45G 7552 81.3
Swin-S 224% 50M 887G  436.9 83.0
Swin-B 2242 88M 154G 278.1 83.5
Swin-B 3842 88M 84.5

47.0G

84.7
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Experimental Results

(b) ImageNet-22K pre-trained models

method e #param. FLOPs tl_lroughput ape

size (image / s) |top-1 acc.
R-101x3 [37] [384% 388M 204.6G - 84.4
R-152x4 [32] |480% 937M 840.5G - 85.4
VIiT-B/16 [2(] |384°> 86M 554G  85.9 84.0
VIT-L/16 [20] |384% 307M 190.7G  27.3 852
Swin-B 224% 88M 154G 278.1 85.2
Swin-B 3842 88M 47.0G  84.7 86.4
Swin-L 384% 197M 103.9G 42.1 87.3
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Experimental Results

(a) Various frameworks
Method  Backbone|AP*™™ APZ* APYY*|#param. FLOPs FPS
Cascade R-50 [463 643 50.5| 82M 739G 18.0
Mask R-CNN Swin-T |50.5 69.3 54.9 | 86M 745G 15.3
ATSS R-50 |43.5 619 47.0| 32M 205G 28.3
Swin-T |47.2 66.5 51.3| 36M 215G 22.3
RepPointsV2 R-50 |46.5 64.6 503 | 42M 274G 13.6
Swin-T |50.0 68.5 54.2| 45M 283G 12.0
Sparse R-50 |445 634 482 | 106M 166G 21.0
R-CNN Swin-T [47.9 67.3 523 | 110M 172G 184
(b) Various backbones w. Cascade Mask R-CNN

AP** AP%* AP52|AP™2k APTEsk A Pkl aram FLOPs FPS

DeiT-ST|48.0
R50 |46.3
Swin-T | 50.5

67.2
64.3
69.3

51.7
50.5
54.9

414 642
40.1 61.7
43.7 66.6

443
434
47.1

80M 889G 10.4
82M 739G 18.0
86M 745G 15.3

X101-32/48.1
Swin-S | 51.8

66.5
70.4

52.4
56.3

416 639
4.7 679

45.2
48.5

101M 819G 12.8
107M 838G 12.0

X101-64(48.3
Swin-B | 51.9

66.4
70.9

52.3
56.5

41.7 64.0
45.0 684

45.1
48.7

140M 972G 10.4

145M 982G 11.6
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Experimental Results

(c) System-level Comparison

mini-val

test-dev

Method APhox APmask APbox APmask #Param FLOPS
RepPointsV2* [17] | - - 52.1 - - -
GCNet* [ ] 51.8 447 |523 454 - 1041G
RelationNet++* [ 7]| - - 52.7 - - -
SpineNet-190 [21] | 52.6 - 52.8 - 164M 1885G
ResNeSt-200* [ /4] | 52.5 - 533 47.1 - -
EfficientDet-D7 [59]| 54.4 - 55.1 - 7IM 410G
DetectoRS* [10] - - 55.7 485 - -
YOLOv4 P7* [4] - - 55.8 - - -
Copy-paste [/0] |559 472 |56.0 47.4 | 185M 1440G
X101-64 (HTC++) | 52.3 46.0 - - 155M 1033G
Swin-B (HTC++) | 56.4 49.1 - - 160M 1043G
Swin-L (HTC++) |57.1 49.5 |57.7 50.2 | 284M 1470G
Swin-L. (HTC++)* | 58.0 50.4 | 58.7 51.1 | 284M -
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Experimental Results

ADE20K val test
Method Backbone |mloU score i i et
DANet[7°] ResNet-101 | 452 - 69OM 1119G 15.2
DLab.v3+ [/ 1] ResNet-101 | 44.1 - 63M 1021G 16.0

ACNet [24]  ResNet-101 | 459 38.5 -

DNL[/1]  ResNet-101 | 46.0 56.2 | 69M 1249G 14.8
OCRNet [/°] ResNet-101 | 453 56.0| 56M 923G 19.3
UperNet [0°] ResNet-101 | 449 - 86M 1029G 20.1
OCRNet [/7] HRNet-w48 | 45.7 - 7IM 664G 12.5

DLab.v3+ [ ] ResNeSt-101| 469 55.1 | 66M 1051G 11.9

DLab.v3+ [ 1] ResNeSt-200| 484 - | 88M 1381G 8.1
SETR[?!]  TLarget |503 61.7| 308M - -
UperNet DeiT-ST [440 - | 52M 1099G 16.2
UperNet Swin-T | 461 - | 60M 945G 185
UperNet Swin-S |493 - | 8IM 1038G 15.2
UperNet Swin-B¥ |51.6 - | 121M 1841G 8.7

UperNet Swin-L* | 53.5 62.8 | 234M 3230G 6.2
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Any Questions?
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