Recent Trends in Machine Learning: A Large-scale Perspective

A Short Introduction to Multi-modal AI Models (Part 2)

Saehoon Kim @ Kakaobrain

Outline of This Course

CLIP Encoder-only 05/04 DALL-E
Decoder-only
05/11

DALL-E 2 Enc-Dec

(akaobr

akaobrain © All rights Reserv

Outline of This Course

Contrastive Learning

Autoregressive Model

Autoregressive Models

kaobrain © All rights Reserv

Image Generation through GAN

akaobrain © All rights Reserv

Image Generation through GAN

$$p(\mathbf{z}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Image Generation through GAN

Definition [edit]

The notation AR(p) indicates an autoregressive model of order p. The AR(p) model is defined as

$$X_t = c + \sum_{i=1}^p arphi_i X_{t-i} + arepsilon_t$$

where $\varphi_1,\ldots,\varphi_p$ are the parameters of the model, c is a constant, and ε_t is white noise. This can be equivalently written using the backshift operator B as

$$X_t = c + \sum_{i=1}^p arphi_i B^i X_t + arepsilon_t$$

$$p_{ heta}(x_1, x_2, \cdots, x_N)$$

A single pixel

$$p_{ heta}(x_1, x_2, \cdots, x_N) = \prod_{n=1}^N p_{ heta}(x_n | x_{< n})$$
A single pixel

Color intensity treated as a categorical variable

Masked conv. filter

Mask for color channels

Color intensity treated as an ordinal variable

$$P(r_i,g_i,b_i|\mathbf{x}_{< i}) = P\left(r_i|\mu_r(\mathbf{x}_{< i}),s_r(\mathbf{x}_{< i})
ight) \ P\left(g_i|\mu_g(\mathbf{x}_{< i},r_i),s_g(\mathbf{x}_{< i})
ight) \ P\left(b_i|\mu_b(\mathbf{x}_{< i},r_i,g_i),s_b(\mathbf{x}_{< i})
ight)$$
 Linear

akaobrain

Discretized Mixture of Logistic Loss

"Assume there is a latent color intensity v with a continuous distribution, rounded to its nearest 8-bit representation to give the observed x"

Discretized Mixture of Logistic Loss

"Assume there is a latent color intensity v with a continuous distribution, rounded to its nearest 8-bit representation to give the observed x"

$$ext{CDF-logistic} = rac{1}{1 + \exp(-(x - \mu)/s)}$$
 $riangleq \sigma((x - \mu)/s)$

Discretized Mixture of Logistic Loss

"Assume there is a latent color intensity v with a continuous distribution, rounded to its nearest 8-bit representation to give the observed x"

Image Transformer (class-conditional)

Image Transformer (RGB)

Image Transformer (RGB)

kaobrain © All rights Reserv

Pixel-level AR Generation

 $P(x_{1,1}, x_{1,2}, ..., x_{256,256}) = ?$

akaobrain © All rights Reserve

Pixel-level AR Generation

$$P(x_{1,1}, x_{1,2}, ..., x_{256,256}) = ?$$

Sequence length = 65K!?

<akabrain @ All rights Reserve

Patch-level AR Generation

$$P(x_1, x_1, ..., x_{16})$$

Patch-level AR Generation

$$P(x_1, x_1, ..., x_{16})$$

Kakaobrain © All rights Reserv

Patch-level AR Generation

64

$$P(x_1, x_1, ..., x_{16}) = \prod_{m} P(x_m | x_{< m})$$

Original Image

Codebook

Stage1

Original Image

Reconstruction

Stage2

$$egin{aligned} \mathcal{L} &= \log p(\mathbf{x}|\mathbf{z}_d(\mathbf{e})) + eta \|\mathbf{z}_e(\mathbf{x}) - \mathrm{sg}[\mathbf{e}]\|_2^2 \ &+ \|\mathrm{sg}[\mathbf{z}_e(\mathbf{x})] - \mathbf{e}\|_2^2 \end{aligned}$$

$$\mathcal{L} = \log p(\mathbf{x}|\mathbf{z}_d(\mathbf{e})) + \beta \|\mathbf{z}_e(\mathbf{x}) - \mathrm{sg}[\mathbf{e}]\|_2^2$$

Reconstruction loss

$$+ \|\mathrm{sg}[\mathbf{z}_e(\mathbf{x})] - \mathbf{e}\|_2^2$$

$$\mathcal{L} = \log p(\mathbf{x}|\mathbf{z}_d(\mathbf{e})) + \beta \|\mathbf{z}_e(\mathbf{x}) - \mathrm{sg}[\mathbf{e}]\|_2^2$$

Reconstruction loss

Commitment loss

$$+ \|\operatorname{sg}[\mathbf{z}_e(\mathbf{x})] - \mathbf{e}\|_2^2$$

$$\mathcal{L} = \log p(\mathbf{x}|\mathbf{z}_d(\mathbf{e})) + \beta ||\mathbf{z}_e(\mathbf{x}) - \mathrm{sg}[\mathbf{e}]||_2^2$$

Reconstruction loss

Commitment loss

$$+ \|\operatorname{sg}[\mathbf{z}_e(\mathbf{x})] - \mathbf{e}\|_2^2$$

Codebook loss

DALL-E: Text-to-Image AR Generation

"A painting of a monkey with sunglasses"

$$P(X_{txt}, X_1, X_1, ..., X_{16})$$

$$= \prod_{m} P(X_m | X_{m}, X_{txt})$$

DALL-E (Model)

DALL-E (Model)

DALL-E (Model)

VQ-GAN

VQ-GAN

Transformer Blocks

akaobrain © All rights Reserved

Naive Sampling

(0,0)

Transformer Blocks

SOS

Need to re-compute hidden representations between previous selected tokens!

Fast Sampling - Caching

(0,0) (0,1) (0,2)

Fast Sampling - Caching

Transformer Blocks

새로운 토큰

Advanced Topics

minDALL-E (publicly available)

1.3B text-to-image autoregressive generation model trained on 14M pairs

https://github.com/kakaobrain/minDALL-E

minDALL-E = VQGAN + Transformer 1D

Stage 2

minDALL-E = VQGAN + Transformer 1D

Stage 2

Quantitative Results

Model -	CC3M Validation	COCO Validation	
	CLIP Score	FID-30K	FID-30K (re-ranking)
VQ-GAN	0.20	-	-
ImageBART	0.23	-	-
DALL-E	-	34.5	27.5
minDALL-E	0.26	19.6	14.7

Sampling Time

brain

Sampling Time

Top-K = 256, Temp=1.0

Top-K = 256, Temp=5.0

Top-K = 256, Temp=0.5

Top-K = 256, Temp=1.0

Top-K = 256, Temp=5.0

akaobrain © All rights Reserve

Our Research

Sampling/ Training Speed-up

akaobrain © All rights Reserve

Our Research

Sampling/ Training Speed-up

Why training/sampling slow?

akaobrain © All rights Reserv

Why training/sampling slow?

Residual-Quantized VAE (RQ-VAE)

Coarse-to-fine reconstruction by residual quantization

Residual-Quantized VAE (RQ-VAE)

Coarse-to-fine reconstruction by residual quantization

RQ-VAE & RQ-Transformer

RQ-Transformer

RQ-Transformer is more efficient than previous AR models in Text-to-Image / class-cond. Image generation task, while performs better than ones

Figure 4. The sampling speed of RQ-Transformer with 1.4B parameters according to batch size and code map shape.

RQ-Transformer

RQ-Transformer is more efficient than previous AR models in Text-to-Image / class-cond. Image generation task, while performs better than ones

Table 3. Comparison of FID and CLIP score [36] on the validation data of CC-3M [43] for text-conditioned image generation.

	Params	FID	CLIP-s
VQ-GAN [14]	600M	28.86	0.20
ImageBART [13]	2.8B	22.61	0.23
RQ-Transformer	654M	12.33	0.26

Table 2. Comparison of FIDs and ISs for class-conditioned image generation on ImageNet [9] 256×256. † denotes a model without our stochastic sampling and soft labeling. ‡ denotes the use of rejection sampling with 0.05 acceptance rate.

	Params	FID	IS
ADM [11]	554M	4.59	186.7
ImageBART [13]	3.5B	21.19	61.6
BigGAN [3]	164M	7.53	168.6
BigGAN-deep [3]	112M	6.84	203.6
VQ-VAE2 [39]	13.5B	~31	~45
DCT [33]	738M	36.5	n/a
VQ-GAN [14]	1.4B	15.78	74.3
RQ-Transformer [†]	821M	14.06	95.8±2.1
RQ-Transformer	821M	13.11	104.3 ± 1.5
RQ-Transformer	1.4B	11.56	112.4 ± 1.1
RQ-Transformer [‡]	1.4B	4.45	326.0 ± 3.5
Validation Data	-	1.62	234.0

kaobrain @ All rights Reserve

Our Research

Sampling/ Training Speed-up

Multi-scale VQ for Enhancement

Multi-scale VQ for Enhancement

ikaobrain © All rights Reserve

Multi-scale VQ for Enhancement

Kake

Multi-scale VQ for Enhancement

A cartoon character of a pineapple

A painting of a monkey with sunglasses in the frame

minDALL-E

minDALL-E + multi-scale VQ

kaobrain

Multi-scale VQ for Enhancement

Café Terrace at Night

An illustration of a yellow ghost with a computer

minDALL-E

Conclusion

Autoregressive Models / Ours Approaches

