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Abstract

We propose a Bayesian optimization method over sets, to minimize a black-box function
that can take a set as single input. Because set inputs are permutation-invariant and
variable-length, traditional Gaussian process-based Bayesian optimization strategies which
assume vector inputs can fall short. To address this, we develop a Bayesian optimization
method with set kernel that is used to build surrogate functions. This kernel accumulates
similarity over set elements to enforce permutation-invariance and permit sets of variable
size, but this comes at a greater computational cost. To reduce this burden, we propose a
more efficient probabilistic approximation which we prove is still positive definite and is an
unbiased estimator of the true set kernel. Finally, we present several numerical experiments
which demonstrate that our method outperforms other methods in various applications.

1. Introduction

Bayesian optimization (BO) is an effective method to optimize a black-box function which is
expensive to evaluate. It has proven useful in several applications, including hyperparameter
optimization (Snoek et al., 2012; Hutter et al., 2011), material design (Frazier and Wang,
2016), and synthetic gene design (González et al., 2014). Classic BO assumes that a search
region X ⊂ Rd is defined and that the black-box function f can only produce scalar output
in the presence of additive noise ε, i.e., y = f(x) + ε for x ∈ X .

Unlike this standard BO formulation, in this article we assume that our search region is
Xset = {{x1, . . . ,xm} | xi ∈ Rd} for a fixed positive integer m. Thus, for X ∈ Xset, f would
take in a set containing m elements, all of length d, and return a noisy function value y:

y = f (X) + ε. (1)

Our motivating example comes from the soft k-means clustering algorithm over a dataset
P = {p1, . . . ,pN}; in particular, we want to find the optimal initialization of such an
algorithm. The objective function for this problem is a squared loss function which takes
in the cluster initialization points {x1, . . . ,xk} and returns the weighted distance between
the points in P and the converged cluster centers {c1, . . . , ck}.
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Some previous research has tried to build Gaussian process (GP) models on set data.
(Garnett et al., 2010) proposes a method over discrete sets using stationary kernels over the
first Wasserstein distance between two sets, though the power set of fixed discrete sets as
domain space is not our interest. However, this method needs the complexity O(n2m3d),
to compute a covariance matrix with respect to n sets. Moreover, because it only considers
stationary kernels, GP regression is restricted to the form that cannot express non-stationary
models (Paciorek and Schervish, 2004).

Therefore, we instead adapt and augment a strategy proposed by (Gätner et al., 2002)
involving the creation of a specific set kernel. This set kernel uses a kernel defined on the
elements x ∈ Rd of the sets to build up its own sense of covariance between sets. In turn,
then, it can be directly used to build surrogate functions through GP regression, which then
can power BO, by Lemma 1.

A key contribution of this article is the development of a computationally efficient ap-
proximation to this set kernel. Given n total observed function values, the cost of construct-
ing the matrix required for fitting the GP is O(n2m2d) where m ≥ n approximately. We
propose the use of random subsampling to reduce the computational cost to O(n2L2d) for
L < m while still producing an unbiased estimate of the expected value of the true kernel.

2. Background

2.1 Bayesian Optimization

BO seeks to minimize an unknown function f which is expensive to evaluate:

x? = arg min
x∈X

f(x) (2)

where X ⊂ Rd is a compact space. It is a sequential optimization strategy which, at
each iteration, balances exploration and exploitation with surrogate model and acquisition
function. After exhausting a predefined observation budget T , BO returns the best point
x† that has the minimum observation. The benefit of this process is that the optimization
of the expensive function f has been replaced by the optimization of much cheaper and
more well-understood acquisition functions an.

In this paper, we use GP regression (Rasmussen and Williams, 2006) to produce the
surrogate function sn; from sn, we use the standard acquisition function expected improve-
ment (Moćkus et al., 1978): an(x) = E[(y†n−sn(x))+], where y†n = min1≤i≤n yi. See (Brochu
et al., 2010; Shahriari et al., 2016; Frazier, 2018) for further details on BO.

2.2 Set Kernel

We start by introducing notation which is required for performing kernel approximation of
functions on set data. A set of m vectors is denoted X = {x1, . . . ,xm}. In a collection
of n such sets (as will occur in the BO setting), the kth set would be denoted X(k) =

{x(k)
1 , . . . ,x

(k)
m }. Note that we are restricting all sets to be of the same size |X(k)| = m here.

To build a GP surrogate, we require a prior belief of the covariance between elements
in Xset = {{x1, . . . ,xm} | xi ∈ Rd}. This belief is imposed in the form of a positive-definite
covariance kernel kset : Xset × Xset → R; see (Schölkopf and Smola, 2002; Fasshauer and
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McCourt, 2015) for more discussion on approximation with kernels. In addition to the
symmetry kset(X

(i),X(j)) = kset(X
(j),X(i)) required in standard kernel settings, kernels on

sets require an additional property. The ordering of elements in X should be immaterial
(since sets have no inherent ordering).

Given an empirical approximation of the kernel mean µX ≈ |X|−1
∑|X|

i=1 φ(xi) where
φ(·) is a basis function Rd → Rd′ and d′ is a dimension of projected space by φ, a set
kernel (Gätner et al., 2002; Muandet et al., 2017) is defined as

kset

(
X(1),X(2)

)
= 〈µX(1) ,µX(2)〉 =

1

|X(1)||X(2)|

|X(1)|∑
i=1

|X(2)|∑
j=1

k
(
x

(1)
i ,x

(2)
j

)
(3)

since k(xi,xj) = 〈φ(xi), φ(xj)〉 = φ(xi)
>φ(xj). Here, k : X × X → R is a positive-definite

kernel defined to measure the covariance between the d-dimensional elements of the sets.

3. Proposed Method

In order for (3) to be a viable covariance kernel of a GP regression, it must be positive-
definite. To discuss this topic, we denote a list of n sets with the notation X = [X(1), . . . ,X(n)]
∈ Xset

n; in this notation, the order of the entries matters.

Lemma 1 Suppose we have a list X which contains distinct sets X(i) for 1 ≤ i ≤ n. We
define the matrix K ∈ Rn×n as

(K)ij = kset

(
X(i),X(j)

)
, (4)

for kset defined with a chosen inner kernel k as in (3). Then, K is a symmetric positive-
semidefinite matrix if k is a symmetric positive-definite kernel.

This proof appears in (Haussler, 1999), and is discussed in (Gätner et al., 2002).

3.1 Approximation of the Set Kernel

Computing (4) requires pairwise comparisons between all sets present in X, which has a
complexity O(n2m2d). To alleviate this cost, we propose to approximate (3) with

k̃set

(
X(1),X(2);π,w, L

)
= kset

(
X̃(1), X̃(2)

)
(5)

where π : [1, . . . ,m] → [1, . . . ,m], w ∈ Rd and L ∈ Z+, and X̃(i) is a subset of X(i) which
is defined by those three quantities (we omit explicitly listing them in X̃(i) to ease the
notation).

The goal of the approximation strategy is to convert from X(i) (of size m) to X̃(i) (of size
L) in a consistent fashion during all the k̃set computations comprising K. We accomplish
this in two steps: (i) use a randomly generated vector w to impose an (arbitrary) ordering of
the elements of all sets X(i), and (ii) randomly permute the indices [1, . . . ,m] via a function
π. These random strategies are defined once before computing the K matrix, and then used
consistently throughout the entire computation.
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To impose an ordering of the elements, we use a random scalar projection w ∈ Rd such
that the elements of w are drawn from the standard normal distribution. If the scalar pro-
jections of each xi are computed, this produces the set of scalar values {w>x1, . . . ,w

>xm},
which can be sorted to generate an ordered list of [`1, . . . , `m], w>x`1 ≤ · · · ≤ w>x`m ,
for an ordering of distinct indices `1, . . . , `m ∈ [1, . . . ,m]. Ties between w>xi values can
be dealt with arbitrarily. The function π then is simply a random bijection of the integers
[1, . . . ,m] onto themselves. Using this, we can sample L vectors from X(i):

X̃(i) = {x`j | `j = π(j) for 1 ≤ j ≤ L}. (6)

This process, given w, π and L is sufficient for computing kset.

3.2 Properties of the approximation

The covariance matrix for this approximation of the set kernel, which we denote by (K̃)ij =
k̃set(X

(i),X(j);w, π, L), should approximate the full version of covariance matrix, K from
(4). Because of the random structure introduced in Section 3.1, the matrix K̃ will be
random. This will be addressed in Theorem 3, but for now, K̃ represents a single realization
of that random variable, not the random variable itself. To be viable, this approximation
must satisfy the following requirements: (i) pairwise symmetry, (ii) permutation invariance,
(iii) positive definiteness, and (iv) reduced computational cost, which are directly satisfied.

Missing from this list is a statement regarding the quality of the approximation. We
address this in Theorem 3, though we first start by stating Lemma 2. Moreover, using
Theorem 3, we can also obtain the variance of our estimate, as shown in Theorem 4.

Lemma 2 Suppose there are two sets X,Y ∈ Xset. Without loss of generality, let X(i)

and Y(j) denote the ith and jth of
(
m
L

)
possible subsets containing L elements of X and Y,

respectively, in an arbitrary ordering. For 1 ≤ L ≤ m,

(mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b ) =

L2
(
m
L

)2
m2

m∑
c=1

m∑
d=1

k(xc,yd), (7)

where x̄
(i)
a and ȳ

(j)
b are the ath and bth elements of X(i) and Y(j), respectively, in an arbitrary

ordering.

Theorem 3 Suppose that we are given two sets X,Y ∈ Xset and L ∈ Z+. Suppose, further-
more, that w and π can be generated randomly as defined in Section 3.1 to form subsets X̃
and Ỹ. The value of k̃set(X,Y;w, π, L) is an unbiased estimator of the value of kset(X,Y).

Theorem 4 Suppose the same conditions as in Theorem 3. Suppose, furthermore, that
k(x,x′) ≥ 0 for all x,x′ ∈ X . The variance of k̃set(X,Y;w, π, L) is bounded by a function
of m, L and kset(X,Y):

Var
[
k̃set(X,Y;w, π, L)

]
≤
(
m4

L4
− 1

)
kset(X,Y)2. (8)

Proof To accommodate the page limit, the proofs of Lemma 2, Theorem 3 and Theorem 4
are provided in the appendix.
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Algorithm 1 Bayesian Optimization over Sets
Input: A domain Xset, a function f : Xset → R, a budget T ∈ Z+.
Output: Best acquired set X†

1: Choose an initial point X(1) randomly from Xset and evaluate y1 = f(X(1)) + ε1.
2: for k from 1 to T − 1 do
3: Fit the surrogate model sk to all available data {(X(i), yi)}ki=1.
4: Compute the acquisition function ak from sk.
5: Identify X(k+1) = argmaxX∈Xset

ak(X).

6: Evaluate yk+1 = f(X(k+1)) + εk.
7: end for
8: return X† = X(i) if yi = max1≤j≤T yj .
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Figure 1: Results on two synthetic functions. All experiments are repeated ten times.

3.3 Bayesian Optimization over Sets

For BO over Xset, the goal is to identify the set X ∈ Xset such that a given function
f : Xset → R is minimized. As shown in Algorithm 1, BO over sets follows similar steps
as laid out in Section 2.1, except that it involves the space of set inputs and requires a
surrogate function on Xset. As we have indicated, we plan to use a GP surrogate function,
with prior covariance defined either with (3) or (5) and a Matérn 5/2 inner kernel k.

Using a GP model requires computation on the order of O(n3) at the nth step of the
BO because the K matrix must be inverted. Compared to the complexity for computing a
full version of the set kernel O(n2m2d), the complexity of computing the inverse is smaller
if roughly m ≥ n (that is, computing the matrix can be as costly or more costly than
inverting it). Because BO is efficient sampling-based global optimization, n is small and
the situation m ≥ n is reasonable. Therefore, the reduction proposed by the approximation
in Section 3.1 can be effective in reducing complexity of all steps for BO over sets.

4. Experiments

In the appendix we describe the baseline methods against which we compare our method.
All codes are implemented using bayeso (Kim and Choi, 2017). The free parameters for
GP regression are obtained by maximizing a marginal likelihood.

4.1 Synthetic Functions

We test two synthetic circumstances to show BO over sets is a valid approach to find an
optimal set that minimizes an objective function f : Xset → R. In each setting, there is
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Figure 2: Results on initializing k-means clus-
tering and GMM are averaged over
10 trials. To compare with the
baselines fairly, Random, Data, k-
means++ (Arthur and Vassilvitskii,
2007), k-means are run 1,000 times.

an auxiliary function g : X → R, and the function f is defined as f(X) = 1
m

∑m
i=1 g(xi).

The g functions (see the appendix) are designed to be multimodal, giving the opportunity
for the set X to contain xi values from each of the modes in the domain. Additionally,
as is expected, f is permutation invariant (any ordering imposed on the elements of x is
immaterial).

Synthetic 1 We consider d = 1, m = 20 and choose g to be a simple periodic function.

Synthetic 2 g is the summation of probability density functions, where d = 2, m = 20.

As shown in Figure 1, both of these circumstances have a clear multimodal structure,
allowing for optimal sets to contain points which are clustered in a single local minima or
to be spread out through the domain in several local minima. The first three columns of
Figure 1, show that the “Vector” and “Split” strategies have difficulty optimizing functions
in both circumstances. On the other hand, our proposed method finds optimal outcomes
more effectively.

4.2 Initialization of Clustering Methods

We initialize two clustering methods for dataset P = [p1, . . . ,pN ] with BO over sets: (i)
k-means clustering, and (ii) Gaussian mixture model (GMM). For these experiments, we
add four additional baselines for clustering algorithms (see the appendix for the additional
baselines). To fit a dataset with those four baselines, we use the whole dataset without
splitting. For two clustering algorithms, we generate a dataset where N = 500, d = 5, and
k = 10. We split the dataset to training (70%) and test (30%) datasets. In BO settings,
after finding the converged cluster centers {c1, . . . , ck} with training dataset, the adjusted
Rand index (ARI) is computed by test dataset. The algorithms are optimized over 1−ARI.
All clustering models are implemented using scikit-learn (Pedregosa et al., 2011). Due
to the page limit, the detailed explanations of this experiment and Figure 2 are described
in the appendix.

5. Conclusion

In this paper, we propose the BO method over sets, which takes a set as an input and
produces a scalar output. Our method based on GP regression models a surrogate function
using set-taking covariance functions, referred to as set kernel. We approximate the set
kernel to the efficient positive-definite kernel that is an unbiased estimator of the original
set kernel. Our experimental results demonstrate our method can be used in some novel
applications for BO.
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Appendix A. Related Works

Although it has been raised in different interests, meta-learning approaches dealt with set
inputs are promising in machine learning community, because they can generalize distinct
tasks with meta-learners (Edwards and Storkey, 2017; Zaheer et al., 2017; Finn et al., 2017;
Garnelo et al., 2018). In particular, (Edwards and Storkey, 2017; Zaheer et al., 2017; Garnelo
et al., 2018) propose feed-forward neural networks which take permutation-invariant and
variable-length inputs: they have the goal of obtaining features derived from the sets with
which to input to a standard (meta-)learning routine. Because they consider modeling of
set data, they are related to our work, but they are interested in their own specific examples
such as point cloud classification, few-shot learning, and image completion.

In BO, (Garnett et al., 2010) suggests a method to find a set that produces a global
minimum with respect to discrete sets, each of which is an element of power set of entire set.
Because the time complexity of the first Wasserstein distanace is O(n2m3d), they assume
a small cardinality of sets and discrete searching space for global optimization method.
Furthermore, their method restricts the number of iterations for optimizing an acquisition
function, since by the curse of dimensionality the number of iterations should be increased
exponentially. However, it implies that the global solution of acquisition function is hard
to be found.

Compared to (Garnett et al., 2010), we consider continuous domain space which implies
an acquired set can be composed of any instances in a compact space X . We thus freely use
off-the-shelf global optimization method or multi-started local optimization method (Shahri-
ari et al., 2016) with relatively large number of instances in sets. In addition, its structure
of kernel is kst(d(X(1),X(2))) where kst(·) is a stationary kernel (Genton, 2001) and d(·, ·)
is some distance function over two sets (e.g., in (Garnett et al., 2010) the first Wasserstein
distance). Using the method proposed in the subsequent section, non-stationary kernels
might be considered in modeling a surrogate function.

Appendix B. Proof of Lemma 2

Proof We can rewrite the original summation in a slightly more convoluted form, as

(mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b ) =

(mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

m∑
c=1

m∑
d=1

k(x̄(i)
a , ȳ

(j)
b )I

x̄
(i)
a ,ȳ

(j)
b

(xc,yd),

=
m∑
c=1

m∑
d=1

(mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b )I

x̄
(i)
a ,ȳ

(j)
b

(xc,yd)

 , (9)

where I
x̄
(i)
a ,ȳ

(j)
b

(xc,xd) = 1 if x̄
(i)
a = xc and ȳ

(j)
b = yd, and 0 otherwise. As these are finite

summations, they can be safely reordered.
The symmetry in the structure and evaluation of the summation implies that as each

xc quantity will be paired with each yd quantity the same number of times. Therefore, we
need only consider the number of times that these quantities appear.

We recognize that this summation follows a pattern related to Pascal’s triangle. Among
the

(
m
L

)
possible subsets x̄ of X, only the fraction L/m of those contain the quantity xc for
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all 1 ≤ c ≤ m (irrespective of how that entry may be denoted in x̄
(i)
a terminology). Because

of the symmetry mentioned above, each of those xc quantities is paired with each of the yd

quantities the same L
m

(
m
L

)
number of times. This result implies that

(mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b )I

x̄
(i)
a ,ȳ

(j)
b

(xc,yd) =
L2
(
m
L

)2
m2

k(xc,yd), (10)

where I
x̄
(i)
a ,ȳ

(j)
b

(xc,yd) = 1 if x̄
(i)
a = xc and ȳ

(j)
b = yd, and 0 otherwise. Substituting (10)

into the bracketed quantity in (9) above completes the proof.

Appendix C. Proofs of Set Kernel Estimator Properties

We start by introducing the notation W and Π to be random variables such that W ∼
N (0, Id) and Π is a uniformly random permutation of the integers between 1 and m. These
are the distributions defining the w and π quantities described above. With this, we note
that k̃set(X,Y;W,Π, L) is a random variable.

We also introduce the notation σL(X) to be the distribution of random subsets of X
with L elements selected without replacement, the outcome of the subset selection from
Section 3.1. This notation allows us to write the quantities

EW,Π[k̃set(X,Y;W,Π, L)] = EX̄,Ȳ[kset(X̄, Ȳ)] ≡ E[kset(X̄, Ȳ)], (11)

VarW,Π[k̃set(X,Y;W,Π, L)] = VarX̄,Ȳ[kset(X̄, Ȳ)] ≡ Var[kset(X̄, Ȳ)], (12)

for X̄ ∼ σL(X), Ȳ ∼ σL(Y). We have dropped the random variables from the expectation
and variance definitions for ease of notation.

C.1 Proof of Theorem 3

Proof Our goal is to show that E[kset(X̄, Ȳ)] = kset(X,Y), where E[kset(X̄, Ȳ)] is defined
in (11).

We first introduce an extreme case: L = m. If L = m, the subsets we are constructing
are the full sets, i.e., σm(X) contains only one element, X. Thus, k̃set(X,Y;W,Π,m) =
kset(X,Y) is not a random variable.

For 1 ≤ L < m, we compute this expected value from the definition (with some abuse
of notation):

E[kset(X̄, Ȳ)] =
∑
X̄,Ȳ

kset(X̄, Ȳ)p(X̄, Ȳ). (13)

There are
(
m
L

)
subsets, all of which could be indexed (arbitrarily) as X̄(i) for 1 ≤ i ≤

(
m
L

)
.

The probability mass function is uniform across all subsets, meaning that p(X̄ = X̄(i), Ȳ =

Ȳ(j)) = 1/
(
m
L

)2
. Using this, we know

E[kset(X̄, Ȳ)] =

(mL)∑
i=1

(mL)∑
j=1

kset(X̄
(i), Ȳ(j))

1(
m
L

)2 . (14)

10
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We apply (3) to see that

kset(X̄
(i), Ȳ(j)) =

1

L2

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b ), (15)

following the notational conventions used above. The expectation involves four nested
summations,

E[kset(X̄, Ȳ)] =
1

L2
(
m
L

)2 (mL)∑
i=1

(mL)∑
j=1

L∑
a=1

L∑
b=1

k(x̄(i)
a , ȳ

(j)
b ). (16)

We utilize Lemma 2 to rewrite this as

E[kset(X̄, Ȳ)] =
1

L2
(
m
L

)2 L2
(
m
L

)2
m2

m∑
c=1

m∑
d=1

k(xc,yd) =
1

m2

m∑
c=1

m∑
d=1

k(xc,yd). (17)

C.2 Proof of Theorem 4

Proof The variance of kset(X̄, Ȳ), defined in (12), is computed as

Var
[
kset(X̄, Ȳ)

]
= E

[(
kset(X̄, Ȳ)− E

[
kset(X̄, Ȳ)

])2]
= E

[
kset(X̄, Ȳ)2

]
+ kset(X,Y)2 − 2kset(X,Y)E

[
kset(X̄, Ȳ)

]
= E

[
kset(X̄, Ȳ)2

]
− kset(X,Y)2, (18)

where Theorem 3 is invoked to produce the final line. Using (14) and (15), we can express
the first term of (18) as

E
[
kset(X̄, Ȳ)2

]
=

(mL)∑
i=1

(mL)∑
j=1

(
1

L2

L∑
a=1

L∑
b=1

k(x̄(i)
a , x̄

(j)
b )

)2
1(
m
L

)2 . (19)

At this point, we invoke the fact that k(x,x′) ≥ 0 to state

0 ≤
L∑

a=1

L∑
b=1

k(x̄(i)
a , x̄

(j)
b ) ≤

m∑
a=1

m∑
b=1

k(xa,xb), (20)

which is true because the summation to m terms contains all of the elements in the sum-
mation to L terms, as well as other (nonnegative) elements. Using this, we can bound (19)

11
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by

E
[
kset(X̄, Ȳ)2

]
≤

(mL)∑
i=1

(mL)∑
j=1

(
1

L2

m∑
a=1

m∑
b=1

k(xa,xb)

)2
1(
m
L

)2
=

m4(
m
L

)2
L4

(mL)∑
i=1

(mL)∑
j=1

(
1

m2

m∑
a=1

m∑
b=1

k(xa,xb)

)2

=
m4(

m
L

)2
L4

(
m

L

)2

kset(X,Y)2

=
m4

L4
kset(X,Y)2. (21)

Therefore, with (21), (18) can be written as

Var
[
kset(X̄, Ȳ)

]
≤ m4

L4
kset(X,Y)2 − kset(X,Y)2 =

(
m4

L4
− 1

)
kset(X,Y)2 (22)

which concludes this proof.

The restriction k(x,x′) ≥ 0 is satisfied by many standard covariance kernels (such as
the Gaussian, the Matérn family and the multiquadric) as well as some more interesting
choices (such as the Wendland or Wu families of compactly supported kernels). It does,
however, exclude some oscillatory kernels such as the Poisson kernel as well as kernels
defined implicitly which may have an oscillatory behavior. More discussion on different
types of kernels and their properties can be found in the kernel literature Fasshauer and
McCourt (2015).

Appendix D. Experiments

D.1 Baselines for All Experiments

Vector A standard BO is performed over a md-dimensional space where, at the nth step,
the available data Xn ∈ Xset

n is vectorized to [x1, . . . ,xn] for xi ∈ Rmd with associated
function values. At each step, the vectorized next location xn+1 is converted into a
set Xn+1.

Split Individual BO strategies are executed on the m components comprising X . At the
nth step, the available data Xn ∈ Xset

n is decomposed into m sets of data, the ith of

which consists of [x
(i)
1 , . . . ,x

(i)
n ] with associated data. The m vectors produced during

each step of the optimization are then collected to form Xn+1 at which to evaluate f .

D.2 Baselines for Initialization of Clustering Methods

Random This baseline randomly draws k points from a compact space ⊂ Rd.

Data This baseline randomly samples k points from a dataset P. It is widely used in
initializing a clustering algorithm.

12
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(k-means only) k-means++ This is a method for k-means clustering with the intu-
ition that spreading out initial cluster centers is better than the “Data” baseline (see
(Arthur and Vassilvitskii, 2007) for the details).

(GMM only) k-means This baseline sets initial cluster centers as the results of k-means
clustering.

D.3 Synthetic Functions

We define our synthetic functions as

Synthetic 1 We consider d = 1, m = 20 and a g function which is a simple periodic
function

g(x) = sin(2‖x‖2) + |0.05‖x‖2|. (23)

Synthetic 2 We consider d = 2, m = 20 and a g function which is the summation of
probability density functions

g(x) = −
8∑

i=1

p(x;µi,Σi) (24)

where p is the normal density function with µi depicted in Figure 1 and Σi = I2.

D.4 Initialization of Clustering Methods

The function of interest in the k-means clustering setting is the converged clustering residual
k-means({x1, . . . ,xk}) =

∑N
i=1

∑k
j=1wij‖pi−cj‖22, where {x1, . . . ,xk} is the set of proposed

initial cluster centers, {c1, . . . , ck} is the set of converged cluster centers (Lloyd, 1982), and
wij are softmax values from the pairwise distances. Here, the fact that cj is a function
of X and P is omitted for notational simplicity. The set of converged cluster centers is
determined through an iterative strategy which is highly dependent on the initial points X
to converge to effective centers. As shown in Figure 2, our method with L = 1 shows the
best performance compared to other baselines.

In contrast to k-means clustering, the GMM estimates parameters of Gaussian distri-
butions and mixing parameters between the distributions. Because it is difficult to min-
imize negative log-likelihood of the observed data, we fit the GMM using expectation-
maximization (EM) algorithm (Dempster et al., 1977). Similarly to k-means clustering,
this requires initial guesses X to converge to cluster centers {c1, . . . , ck}.

As shown in Figure 2, we conduct the experiments to initialize the mixture of Gaussians.
Our method shows better performance than other baselines except the “Vector” baseline.
Because the “Vector” baseline finds an optimal set under the assumption that we know the
structure of sets, it does not directly match to the problem interested in this work, though
it can be considered as the baseline.
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