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Abstract
A choice of optimization objective is immensely pivotal in the
design of a recommender system as it affects the general model-
ing process of a user’s intent from previous interactions. Existing
approaches mainly adhere to three categories of loss functions: pair-
wise, pointwise, and setwise loss functions. Despite their effective-
ness, a critical and common drawback of such objectives is viewing
the next observed item as a unique positive while considering all
remaining items equally negative. Such a binary label assignment
is generally limited to assuring a higher recommendation score of
the positive item, neglecting potential structures induced by vary-
ing preferences between other unobserved items. To alleviate this
issue, we propose a novel method that extends original objectives
to explicitly leverage the different levels of preferences as relative
orders between their scores. Finally, we demonstrate the superior
performance of our method compared to baseline objectives.

CCS Concepts
• Information systems→ Recommender systems.
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1 Introduction
Distinguishing items by relevance to an each user’s previous interac-
tion history is the essence of most applied sequential recommender
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Figure 1: Average recommendation scores of item subsets on
the Amazon Beauty dataset trained with BPR (red solid), BCE
(blue solid), and our transitive extensions (hatch). Each item
subset in 𝑥-axis equally consists of 20% of the total items di-
vided based on their popularity. Bars with diagonal hatch as-
sume that a user generally prefer popular items whereas bars
with horizontal hatch regard niche items more preferred.

systems. Conventional approaches [12, 23, 24, 30] frame this task as
learning the feature representations of a chronologically-ordered
list of user’s interacted items and a candidate item. By computing
the inner product between two vectors, we then obtain a recom-
mendation score that quantitatively indicates the relevance. On
that basis, a prevalent training process reformulates the problem
into a supervised learning framework with binary labels, where the
next interacted item of each user becomes a unique positive to its
sequence of previous items. Such a procedure often accompanies
negative sampling [3–5, 7, 15, 21] among the rest of items since the
score computation of all items during each training step inevitably
results in severe inefficiency [14, 33].

In this line of research, numerous approaches have adopted
advanced neural networks as feature encoders [2, 8–10, 13, 16,
27, 28, 35, 36] to capture more complex correlations. Apart from
vast architectural improvements, the majority of models yet utilize
one of three types of loss functions as an optimization objective:
pairwise, e.g., BPR [22], pointwise, e.g., BCE [1, 34], and setwise,
e.g., SSM [29] functions. While the formulation of each function
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varies, they all share the desired result of increasing the score of
the unique positive than the scores of the other items. Notably,
most recent studies on loss functions and negative sampling strate-
gies [4, 7, 11, 25, 26, 31, 32] aim for improved training efficiency
and robustness to false negatives within three core objectives. De-
spite their effectiveness, the model trained with such objectives
consequently learns to regard unobserved items as equally negative
with their labels simply set to zero. In real-world recommendation,
however, a subset of negative items is occasionally more favorable
than the other due to various side factors, e.g., item popularity. Un-
fortunately, the current scheme of binary label assignments hinders
from fully taking advantage of diverse levels of preferences among
unobserved items.

To address the aforementioned issue, we first derive an inductive
relation, dubbed weak transitivity, which represents preference-
driven orders of item scores. We then propose novel extensions
of original loss functions that directly leverage this weak transi-
tivity in their forms. Consequently, the recommendation scores
of unobserved items are aligned with respect to their preferences.
Figure 1 highlights such a property of resulting recommendation
policy trained with our proposed family of objectives. Opposed to
the results of BPR [22] and BCE [13], item scores from our transitive
extensions TransBPRpop and TransBCEpop (horizontal hatch) are
generally proportional to their popularity. Meanwhile, scores from
TransBPRniche and TransBCEniche (diagonal hatch) are inversely
proportional to their popularity, favoring more niche (i.e., unique)
items. To cap it all, we serve the predefined preferences of items as
an additional supervisory factor for their recommendation scores.

It is noteworthy that in this work we do not propose any new
distributions for negative sampling but instead introduce themodifi-
cation of original objectives. Hence, we solely utilize a combination
of item popularity and uniform distributions for negative sampling,
easily accessible in implicit settings. We validate the effectiveness
of our proposed extensions compared to the original loss functions
and their renowned variants on four sequential recommendation
benchmarks. In all settings, our approaches substantially improve
the recommendation performance compared to baseline methods.

2 Background
In this section, we describe a sequential recommendation task and
the details of representative loss functions for recommendation.

2.1 Problem Statement
Let U = {𝑢1, . . . , 𝑢𝑀 } and I = {𝑖1, . . . , 𝑖𝑁 } denote a set of users
and items where 𝑀 and 𝑁 are maximum numbers of users and
items, respectively. Given a chronologically ordered history ℎ𝑢 =

{𝑖𝑢1 , . . . , 𝑖
𝑢
𝑡 } of observed items for a user 𝑢, a goal of sequential

recommendation is to recommend the most relevant next item 𝑖𝑢
𝑡+1.

We first embed the history ℎ𝑢 and a candidate item 𝑖 onto vectors
ℎ′𝑢 and 𝑖′, respectively. Accordingly, a recommendation score 𝑠𝑢𝑖 is
calculated via an inner product between two embeddings.

2.2 Training Objectives
Pairwise Objective. Bayesian personalized ranking (BPR) [22]

models personalized ranking of items. It forces the score of the
positive (i.e., next interacted) item to be higher than the scores

Table 1: Statistics of four preprocessed datasets.

Dataset #Interactions #Users #Items Density

Beauty 198,502 22,363 12,101 0.00073
Toys 167,597 19,412 11,924 0.00072
Sports 296,337 35,598 18,357 0.00045
Yelp 317,182 30,499 20,068 0.00052

of the rest unobserved items. With a dataset D𝑠 composed of a
triplet (𝑢, 𝑖, 𝑗) of which item 𝑖 as a positive and item 𝑗 as a sampled
negative to a user𝑢, the corresponding loss is formulated as follows:

LBPR = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈D𝑠

log𝜎 (𝑠𝑢𝑖 − 𝑠𝑢 𝑗 ), (1)

where 𝜎 (·) is a sigmoid function. A resulting term 𝜎 (𝑠𝑢𝑖 − 𝑠𝑢 𝑗 ) is
the probability of a user 𝑢 preferring an item 𝑖 more than an item 𝑗 .

Pointwise Objective. Similar to the pairwise loss form, binary
cross-entropy (BCE) [13] casts the recommendation problem into
binary classification with a single sampled negative. Hence with a
dataset D𝑠 of a triplet (𝑢, 𝑖, 𝑗), the loss is defined as below:

LBCE = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈D𝑠

log(𝜎 (𝑠𝑢𝑖 )) + log(1 − 𝜎 (𝑠𝑢 𝑗 )) . (2)

Setwise Objective. The sampled softmax loss (SSM) [29] turns the
problem into a multi-class classification with a finite number of
sampled negatives. With a dataset D𝑚 of a triplet (𝑢, 𝑖,N𝑗 ) consist-
ing of the positive 𝑖 and a set of multiple negative samples N𝑗 to
the user 𝑢, the loss optimizes the probability of the positive as:

LSSM = −
∑︁

(𝑢,𝑖,N𝑗 ) ∈D𝑚

log
exp(𝑠𝑢𝑖 )

exp(𝑠𝑢𝑖 ) +
∑

𝑗∈N𝑗
exp(𝑠𝑢 𝑗 )

. (3)

3 Our Method
Here, we introduce weak transitivity between unobserved items,
and then describe how to integrate it to original objectives.

3.1 Weak Transitivity
Inducing orders on recommendation scores of unobserved items
requires a model to sample two or more negatives differing in
preferences. In a basic form, let 𝑝1 and 𝑝2 represent two different
sampling distributions for negatives. Given a user𝑢 and its positive 𝑖 ,
we sample a negative 𝑗 from 𝑝1 and𝑘 from 𝑝2 where 𝑖 ≠ 𝑗 ≠ 𝑘 . Since
the positive 𝑖 is the most preferred item to the user 𝑢, a transitive
relation 𝑠𝑢𝑖 > 𝑠𝑢 𝑗 > 𝑠𝑢𝑘 holds true when 𝑗 is more preferred than 𝑘 .
Strict transitivity then corresponds to a scheme where any 𝑗 from
𝑝1 is guaranteed to be more preferred than any 𝑘 from 𝑝2. However,
when the sampled negative 𝑗 is actually less preferable than 𝑘 , the
relation 𝑠𝑢𝑖 > 𝑠𝑢 𝑗 > 𝑠𝑢𝑘 is violated. We refer this scheme as weak
transitivity which allows such occasional violations.

The concept of transitivity with multiple negatives is straight-
forward as well. Instead of sampling a single negative from each
distribution, we sample a set of negatives N𝑗 = { 𝑗1, . . . , 𝑗𝑛} from
𝑝1 and N𝑘 = {𝑘1, . . . , 𝑘𝑛} from 𝑝2. Consequently, with 𝑠N𝑗

=

{𝑠𝑢 𝑗1 , . . . , 𝑠𝑢 𝑗𝑛 } and 𝑠N𝑘
= {𝑠𝑢𝑘1 , . . . , 𝑠𝑢𝑘𝑛 }, a transitive relation
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Table 2: Quantitative results of different methods on public datasets in terms of HR and NDCG. The number of recommended
items is fixed to 10. Reported metrics in bold are best performing methods whereas underlined numbers are second to the best.

Beauty Toys Sports YelpType Loss HR NDCG HR NDCG HR NDCG HR NDCG

BPR 0.0470 0.0213 0.0518 0.0244 0.0263 0.0122 0.0555 0.0328
GBPR 0.0529 0.0246 0.0618 0.0281 0.0277 0.0121 0.0607 0.0346
TransBPRpop 0.0674 0.0293 0.0747 0.0338 0.0397 0.0179 0.0576 0.0362Pairwise

TransBPRniche 0.0651 0.0289 0.0777 0.0358 0.0372 0.0171 0.0566 0.0355

BCE 0.0511 0.0229 0.0590 0.0274 0.0290 0.0130 0.0529 0.0306
gBCE1 0.0545 0.0245 0.0656 0.0297 0.0294 0.0135 0.0551 0.0319
TransBCEpop 0.0730 0.0324 0.0805 0.0372 0.0413 0.0186 0.0561 0.0360Pointwise

TransBCEniche 0.0720 0.0322 0.0800 0.0369 0.0399 0.0179 0.0569 0.0358

SSM 0.0656 0.0318 0.0673 0.0351 0.0381 0.0185 0.0616 0.0350
InfoNCE 0.0632 0.0318 0.0742 0.0395 0.0363 0.0188 0.0483 0.0255
BPR-DNS 0.0776 0.0356 0.0839 0.0386 0.0406 0.0187 0.0523 0.0349
gBCEN 0.0725 0.0362 0.0783 0.0407 0.0415 0.0205 0.0632 0.0359
TransSSMpop 0.0843 0.0395 0.0922 0.0439 0.0499 0.0229 0.0693 0.0418

Setwise

TransSSMniche 0.0774 0.0370 0.0874 0.0417 0.0399 0.0187 0.0642 0.0385

is modified as 𝑠𝑢𝑖 > max(𝑠N𝑗
) > min(𝑠N𝑗

) > max(𝑠N𝑘
) with the

same criteria for weak and strict cases.

3.2 Extensions with Weak Transitivity
We propose novel extensions of original training objectives that
resolves the limitation of binary label assignments by incorporating
the derived transitive relation to the loss formulation. We first
introduce two sampling schemes by utilizing an item popularity
distribution 𝑝pop and a uniform distribution 𝑝unif:

D′
𝑠 (pop) = {(𝑢, 𝑖, 𝑗, 𝑘) | 𝑗 ∼ 𝑝pop, 𝑘 ∼ 𝑝unif}, (4)

D′
𝑠 (niche) = {(𝑢, 𝑖, 𝑗, 𝑘) | 𝑗 ∼ 𝑝unif, 𝑘 ∼ 𝑝pop}, (5)

where 𝑗 is the more preferred negative and 𝑘 is the less preferred
one. The mini-batchD′

𝑠 (pop) assumes that a user generally prefers
popular itemswhereasD′

𝑠 (niche) regards niche itemsmore favored.
Our extension of the BPR objective with transitivity is then given
by the following:

LTransBPR = −
∑︁

(𝑢,𝑖, 𝑗,𝑘 )∈D′
𝑠

log𝜎 (𝑠𝑢𝑖 − 𝑠𝑢 𝑗 )︸             ︷︷             ︸
original

+𝛾 log𝜎 (𝑠𝑢 𝑗 − 𝑠𝑢𝑘 )︸              ︷︷              ︸
preference

, (6)

where 𝛾 is a balancing coefficient for two terms. In essence, the
preference term encourages the score of 𝑗 to be higher than that
of 𝑘 while the original term assures it to be smaller than that of 𝑖 .
As a consequence, our objective explicitly imposes the transitive
relation 𝑠𝑢𝑖 > 𝑠𝑢 𝑗 > 𝑠𝑢𝑘 to recommendation scores. Combining
the proposed formulation with the previously introduced sampling
schemes, we obtain two distinct training objectives as follows:

TransBPRpop = LTransBPR (D′
𝑠 (pop);𝜃 ), (7)

TransBPRniche = LTransBPR (D′
𝑠 (niche);𝜃 ), (8)

where 𝜃 is learnable parameters of the model. Similarly, the exten-
sion of the BCE function is formulated as below:

LTransBCE = −
∑︁

(𝑢,𝑖, 𝑗,𝑘 ) ∈D′
𝑠

[
log(𝜎 (𝑠𝑢𝑖 )) + log(1 − 𝜎 (𝑠𝑢 𝑗 ))

+ 𝛾
(
log(𝜎 (𝑠𝑢 𝑗 )) + log(1 − 𝜎 (𝑠𝑢𝑘 ))

)]
. (9)

Naturally, TransBCEpop and TransBCEniche are two consequent
training schemes with D′

𝑠 (pop) and D′
𝑠 (niche), respectively. For

the setwise loss function, we sample a set of itemsN𝑗 andN𝑘 from
each distribution instead of sampling a single item 𝑗 or 𝑘 :

D′
𝑚 (pop) = {(𝑢, 𝑖,N𝑗 ,N𝑘 ) | N𝑗 ∼ 𝑝pop,N𝑘 ∼ 𝑝unif}, (10)

D′
𝑚 (niche) = {(𝑢, 𝑖,N𝑗 ,N𝑘 ) | N𝑗 ∼ 𝑝unif,N𝑘 ∼ 𝑝pop}. (11)

A corresponding extension for the SSM loss function is given by:

LTransSSM = −
∑︁

(𝑢,𝑖,N𝑗 ,N𝑘 ) ∈D′
𝑚

[
log

exp(𝑠𝑢𝑖 )
exp(𝑠𝑢𝑖 ) +

∑
𝑗∈N𝑗

exp(𝑠𝑢 𝑗 )

+ 𝛾 1
|N𝑗 |

∑︁
𝑗∈N𝑗

log
exp(𝑠𝑢 𝑗 )

exp(𝑠𝑢 𝑗 ) +
∑
𝑘∈N𝑘

exp(𝑠𝑢𝑘 )

]
. (12)

As similar to previous extensions, TransSSMpop and TransSSMniche
employs either D′

𝑚 (pop) or D′
𝑚 (niche) for negative sampling.

One thing to note is that our introduced sampling strategies D′
𝑠

and D′
𝑚 are both weak transitive. Nonetheless, modifying them

to a strict setting can be readily accomplished if we can quantify
the preference of each item. For instance, we can reformulate the
mini-batch construction for pairwise and pointwise objectives as:

D†
𝑠 (pop) = {(𝑢, 𝑖, 𝑗, 𝑘) | 𝑓 ( 𝑗) > 𝑓 (𝑘), 𝑗 ∼ 𝑝pop, 𝑘 ∼ 𝑝unif}, (13)

D†
𝑠 (niche) = {(𝑢, 𝑖, 𝑗, 𝑘) | 𝑓 ( 𝑗) < 𝑓 (𝑘), 𝑗 ∼ 𝑝unif, 𝑘 ∼ 𝑝pop}, (14)

where 𝑓 (·) denotes a function that measures the popularity of an
item. However, we argue that such strict transitivity rather hurts
the quality of the resulting recommendation policy.
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Table 3: Comparison of our methods with strict transitivity
and weak transitivity in the Amazon Beauty dataset.

Method HR NDCG

Strict 0.0508 0.0229TransBPRpop Weak 0.0674 0.0293

Strict 0.0571 0.0252TransBPRniche Weak 0.0651 0.0289

Strict 0.0697 0.0311TransBCEpop Weak 0.0730 0.0324

Strict 0.0635 0.0282TransBCEniche Weak 0.0720 0.0322

Strict 0.0631 0.0309TransSSMpop Weak 0.0843 0.0395

Strict 0.0700 0.0346TransSSMniche Weak 0.0774 0.0370

4 Experiments
In this section, we conduct experiments to compare our proposed
extensions to original objectives and their variants.

4.1 Experimental Setup
Datasets. We employ public sequential recommendation tasks

from different domains: Beauty, Toys, and Sports, which are product
review datasets introduced by Amazon.com [17], and Yelp, which is
a widely tested business recommendation dataset. Detailed statistics
of preprocessed datasets are reported in Table 1.

Evaluation Settings and Metrics. For dataset partitioning, we
adopt the conventional leave-one-out strategy [13, 23] to assure
the quality of the trained recommender system. Then, we recom-
mend 𝐾 items with the highest recommendation scores from the
entire item pool. For evaluation, we adopt two common top-𝐾
metrics, HR@𝐾 and NDCG@𝐾 with 𝐾 fixed to 10.

Baselines. We fix a model architecture to SASRec [13] and switch
only a training objective. For baselines, we compare our method
against BPR [22], GBPR [19], BCE [13], SSM [29], InfoNCE [18], BPR-
DNS [31], and gBCE [20]. Here, gBCE1 and gBCEN denote gBCE
with a single negative and multiple negatives, respectively.

Hyperparameters. For all objectives, We train with a fixed batch
size of 256, a learning rate of 0.0003, and a maximum sequence
length of 50. The SASRec model is with 2 layers and 1 attention
head with an embedding dimension of 256. For setwise objectives,
we sample 100 negatives in total. Our proposed TransSSM sets car-
dinality ofN𝑗 andN𝑘 to 50 such that they sum to 100. A balancing
coefficient 𝛾 is selected from {0.5, 1.0, 1.5}.

4.2 Performance Comparison
Table 2 summarizes the performance of models trained with dif-
ferent optimization objectives. In general, our proposed objectives
outperform three original objectives and their notable variants in
both metrics within all benchmarks. Particularly, we recognize
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Figure 2: Average values of each loss term in TransBPR with
Weak (blue), Strict (red), and Disjoint (yellow) transitivity.

TransSSMpop obtain the highest performance among all baselines
in all datasets. Such results demonstrate that inducing preference
order through weak transitivity consistently improves the perfor-
mance regardless of base loss functions. Typically, we observe our
extensions with popularity preference (e.g., TransSSMpop) achieve
commonly improved metrics compared to niche preference (e.g.,
TransSSMniche). Hence, exploiting popularity as the preference in-
dicator is particularly effective regardless of datasets. Though, we
find recommendations with niche preference performs on par with
best-performing baselines or often even better.

4.3 Transitivity Analysis
As seen in Table 3, we observe comparatively higher performance
with weak transitivity. We hypothesize that the number of uninfor-
mative (i.e., easy) negatives [21, 26] increases more within the strict
transitivity as training proceeds. To validate the claim, we report
how average value of each term in the BPR extension, log𝜎 (𝑥𝑢𝑖 𝑗 )
and log𝜎 (𝑥𝑢 𝑗𝑘 ), changes throughout the training with different
schemes. Here, we compare three classes of transitivity: Weak, i.e.,
(4) and (5), Strict, i.e., (13) and (14), andDisjoint, i.e., a specific case of
Strict that sets 50% of total items with high preference as a support
for 𝑝pop and the rest for 𝑝niche. Results in Figure 2 illustrate more
steep decline of the preference term, log𝜎 (𝑥𝑢 𝑗𝑘 ), as the transitivity
becomes more strict. Thus, weak transitivity provides the most
informative gradients, increasing the training effectiveness.

5 Conclusion
In this work, we identified the common and crucial disadvantage
of binary label assignments within conventional recommendation
objectives. To overcome this limitation, we have proposed novel
extensions that directly exploit the preference differences of unob-
served items. Through extensive experiments, we demonstrated the
effectiveness of our method with the thorough analysis. As future
work, the uniformity of normalized embeddings [6] can be applied
to our framework to improve recommendation performance more.
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