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Abstract

Fine-tuning a pretrained model for downstream tasks is a widely-adopted technique,
which is known for its adaptability and reliability across various domains. Despite
its conceptual simplicity, fine-tuning entails several engineering choices such as
the selection of hyperparameters and the determination of checkpoints from an
optimization trajectory. To tackle the difficulty of choosing the best model among
multiple ones obtained from those choices, one of the effective solutions is model
fusion, which combines multiple models on a parameter space. On the other hand,
we observe a large discrepancy between loss and actual metric values where a loss
is often used to pick out models to fuse. While the loss is generally differentiable
and thus easier to optimize, the consideration of metrics is often a preferable
goal to improve model performance. In response, we present a novel model fusion
technique, optimizing a desired metric as well as a loss using Bayesian Optimization
(BO). Moreover, combining the multi-objective BO into model fusion, we devise
a bilevel framework, composed of BO models for hyperparameter optimization
and model fusion. Experiments across various downstream tasks validate decent
performance improvements achieved using our BO-based model fusion method.

1 Introduction

A Natural Language Processing (NLP) domain has significantly been advantaged by pre-trained
Transformer-based Masked Language Models (MLMs) such as BERT [8] and RoBERTa [21], and
large-scale models like GPT [26] and Llama [34]. Typically, these models are fine-tuned on a
supervised downstream dataset for a few epochs. However, this process requires careful tuning of
several hyperparameters such as learning rate and weight-decay coefficient. Additionally, selecting
the optimal checkpoint for the final model, usually based on validation performance during multiple
fine-tuning runs, is crucial, although it does not always ensure optimal generalization on unseen data.

An effective strategy for seeking a high-performing model from multiple candidates is construction
of an ensemble of models. However, traditional ensemble methods come with drawbacks, including
increased memory usage and time complexity, which scales linearly with the number of models
involved. These issues are particularly pertinent for large language models with a large number of
parameters. An alternative approach is model fusion, where multiple models are aggregated in the
parameter space to produce a single proficient model. One of the simplest forms, known as Stochastic
Weight Averaging (SWA) [16], involves taking the average of model parameters obtained during the
optimization process. Despite its simplicity, SWA and its variants have proven successful across
various tasks, especially in computer vision [16, 23, 5, 25]. A recent advancement in this field is the
concept of Model Soups, introduced by Wortsman et al. [37]. In this approach, models from multiple
fine-tuning runs with different hyperparameters are weight-averaged in order to create a powerful
model that outperforms not only individual models but also ensemble models.
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Figure 1: Visualization of a loss landscape over parameters (left) and a metric landscape over
parameters (middle) of the RoBERTa-base on the MRPC validation set. Start and End respectively
denote the first and the last members of SWA. Here, the End can be considered as the fine-tuned weight
without averaging strategies. Different from the loss landscape, the generalization performance of SWA
with regard to the metric landscape suffers from the complex and misaligned surface. Visualization
of the metric landscape (right) of the RoBERTa-base on the RTE validation set. w1, w2, w3 indicate
the members of the SWA. MOBO-SWA identifies a superior generalization area compared to SWA.

The effectiveness of model fusion has predominantly been explored in the visual domain. For
instance, while Model Soups have showcased significant improvements in image classification,
they have not demonstrated superiority over individual best models in the NLP tasks [37], which
is reaffirmed through our own empirical validation. The mechanism behind the simple averaging
methods like SWA lies in their ability to encourage averaged weights to locate on the flatter area
near local optima [16, 14]. Consequently, the models fused with simple averaging would be located
at the center of such flat minima, and thus exhibit strong generalization properties in terms of the
loss function. Unfortunately, for the language models, as we empirically demonstrate, there is a
substantial discrepancy between the loss and evaluation metric, so that a flat loss minimum reached
by SWA does not necessarily correspond to a flat metric minimum, making a simple averaging method
fail to find a good solution.

In this paper we introduce a novel model fusion method, which is dubbed Bilevel-BO-SWA, designed
specifically for fine-tuning language models. We start by illustrating that existing approaches are
not well-suited for our context. In response to this challenge, we propose constructing a fused
model as a weighted combination of individual models, with the goal of maximizing a target metric.
Since evaluation metrics in NLP are typically non-differentiable, we employ BO [2, 12], a black-box
optimization technique. Our application of BO to this problem is noteworthy for two main reasons:

• Multi-objective BO: instead of running BO solely with a single target evaluation metric as
an objective, we employ multi-objective BO that considers both metric and loss functions
for optimization. Despite the disconnect between loss and metric values, we find that
incorporating loss values can still serve as useful guidance, enhancing the efficiency of BO.

• Bilevel model fusion: we devise our model fusion process as a bilevel procedure. Here,
the outer BO is for optimizing the hyperparameters involved in language model fine-tuning.
The inner BO is for the model fusion procedure we propose. The objective of outer BO is to
maximize the gain from the inner BO, that is, to find hyperparameters leading to the best
fused model with inner BO.

We demonstrate the effectiveness of our methods on several NLP tasks with RoBERTa and the
interesting properties of our proposed algorithm through diverse ablation studies.

2 Empirical Analysis on Uniform Weight Averaging

The success of uniform weight averaging (e.g., SWA and Model Soups) in image classification tasks
is grounded on the flatness of a loss landscape. Through uniform weight averaging, it is possible
to venture into a flat minima on the loss landscape, accordingly, achieving effective generalization
performance on a test dataset. This generalization effect is equally observed in the metric landscape,
due to the similarity between the loss landscape and the metric landscape in image classification
tasks. However, the domain of language modeling, characterized by semantic, morphosyntactic, and
pragmatic nuances, necessitates the evaluation of generalization performance across a wide variety of
tasks and metrics [9] which are not exactly aligned with a training loss. These metrics often form
more complex and less flat surfaces compared to the loss.
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The left and middle panels of Figure 1 visually demonstrate that while SWA can reach high generaliza-
tion performance based on the loss function, it poorly performs with respect to the metric (F1 score)
compared to the fine-tuned weights without averaging strategy; refer to Appendix C for detailed
numerical assessment comparing the performance of SWA and the naïve fine-tuned model. However,
the right panel of Figure 1 shows that even though the naïve uniform averaging of three weight points
degrades the metric performance, better points in terms of higher metric values exist in the convex
set of the three weight points. The empirical results we observe above, which are caused by the
complex and misaligned surface, motivate the need to seek the optimal combination of averaging
weights based on the metric. This is in contrast to the previous findings in vision tasks [37] which
argue minimal performance difference between the optimized weights and the uniform weights.

3 Model Fusion through Bayesian Optimization

Through this section, we denote our target language model as M(θ(λ)) where λ is a hyperparameter
vector that is utilized when fine-tuning the model and θ(λ) is model parameters trained with λ. As
discussed in the previous sections, our ultimate goal is to find a single proficient model M(θ̄(λ))
by aggregating the last k models M(θT−k+1(λ)),M(θT−k+2(λ)), . . . ,M(θT (λ)) from a single
training trajectory with T epochs:

θ̄(w,λ) = w1θT−k+1(λ) + w2θT−k+2(λ) + · · ·+ wkθT (λ), (1)

where combination coefficients w1, w2, . . . wk ∈ [0, 1] subject to
∑k

i=1 wk = 1 and w :=
[w1, . . . , wk]. θi(λ) indicates a parameter checkpoint after completing ith training epoch within
a single training trajectory employing the hyperparameters λ. To measure the performance of
M(θ̄(w,λ)), we can use the following performance measures: (i) loss and (ii) metric. A metric
fmetric represents the performance measure of our desired task albeit a non-differentiable function,
while a loss floss is generally differentiable but the discrepancy exists. Notably, fmetric is a function
that produces a task-specific performance for an input model M on a validation set and w.

Our method employs a bilevel optimization approach, where we separately optimize w and λ.
Eventually, this process involves two distinct BO procedures: BO for hyperparameter optimization
and multi-objective BO for combination coefficients optimization. Note that we assume that both floss
and fmetric are solved by minimizing themselves.

3.1 Multi-Objective Bayesian Optimization for Model Fusion

Optimal combination coefficients w can be selected by considering either the loss or the metric.
However, unlike the optimization process of λ, we take into account both the loss and the metric
for the optimization of w. Since we simultaneously minimize both floss and fmetric, we adopt
Multi-Objective Bayesian Optimization (MOBO) to find a Pareto front which is defined as follows:

P =
{
w† | w† = argmin

w

(
floss(M(θ̄(w,λ))), fmetric(M(θ̄(w,λ)))

)}
. (2)

Instead of the use of random scalarization for solving MOBO, we utilize the expected hypervolume
improvement strategy, which is described in [11]. The hypervolume, in this context, is defined as a
volume size between P and a reference point w0. This strategy lets a Pareto front place far from the
reference point, such that the Pareto front maximizes the expected hypervolume. To optimize the
hypervolume improvement objective, we employ the qNEHVI algorithm [7], which is a recent MOBO,
algorithm designed for solving the expected hypervolume improvement problem. The right panel
of Figure 1 shows that our MOBO method successfully finds the optimal w that yields the improved
performance compared to SWA. Refer to Appendix B for the details of our method.

3.2 Bilevel Bayesian Optimization for Model Fusion

The MOBO-based model fusion described above is based on a learning trajectory constructed from a
set of hyperparameters λ. As λ itself has a significant impact on the generalization performance of
the local minima reached with it, it is crucial to carefully choose the optimal value of λ. To this end,
we formulate the problem of optimizing λ as a bilevel optimization, where the inner objective is the
MOBO objective defined in (2). The outer BO is then run with the objective fmetric(M(θ̄(w†,λ))). For
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Table 1: Results on the GLUE dataset using the RoBERTa-base. Numerical results in boldface and
with an underscore indicate the best and the second-best results in the respective datasets, respectively.

Method RTE MRPC CoLA STS-B SST-2 Avg.

Fine-tune 74.94 ± 2.28 91.65 ± 0.65 56.34 ± 2.90 89.86 ± 0.16 94.49 ± 0.04 81.46
SWA [16] 77.19 ± 1.04 91.31 ± 1.82 55.05 ± 3.09 89.89 ± 0.20 94.49 ± 0.08 81.59
Greedy SWA [37] 76.52 ± 1.31 91.84 ± 0.14 56.47 ± 3.20 89.87 ± 0.18 94.36 ± 0.05 81.81
Learned SWA [37] 77.82 ± 3.58 90.62 ± 1.87 59.02 ± 2.60 89.65 ± 0.09 94.19 ± 0.00 82.26

MOBO-SWA (ours) 77.86 ± 0.28 92.05 ± 1.05 58.20 ± 1.72 89.58 ± 0.12 94.55 ± 0.12 82.45
Bilevel-BO-SWA (ours) 78.43 ± 0.26 92.38 ± 0.68 59.21 ± 3.53 89.86 ± 0.01 94.97 ± 0.08 82.97

Best subset (oracle) 80.66 ± 0.52 92.90 ± 0.22 60.01 ± 1.88 89.93 ± 0.20 95.08 ± 0.06 83.72

this outer BO, we utilize Gaussian process (GP) regression [27] and GP upper confidence bound [33]
as a surrogate function and an acquisition function, respectively. Refer to Appendix B for the details
of how we construct the BO component. To summarize, we create the best fusion model through a
two-step process; first, we go through the outer BO for hyperparameter optimization, and then the
inner BO for combination coefficients optimization.

4 Experiments

In this section, we present empirical evidence that demonstrates the effectiveness of Bilevel-BO-SWA
in the NLP tasks. As competitors to our method, we test four algorithms, each aimed at finding a single
high-performing solution: (i) Fine-tune: a straightforward fine-tuning method that selects the best-
performing checkpoint based on a specified metric; (ii) SWA: an optimization technique that averages
the model parameters obtained during a training process; (iii) Greedy SWA: a modified version of
the SWA algorithm, inspired by the Greedy Soup [37]. After the fine-tuning process, we choose
coefficients only if the performance improves after averaging with the previously collected coefficients.
(iv) Learned SWA: a variant of the SWA algorithm, inspired by the Learned Soup [37]. After fine-
tuning, we learn the coefficients considering the loss. In addition, we report the best achievable
results: (v) Best Subset: the oracle on the test set where all possible subsets for the uniform averaging
are considered. Our aim is to reach the results of the Best Subset. Moreover, we validate two versions
of our method: (i) MOBO-SWA: the MOBO optimization with fixed hyperparameters; (ii) Bilevel-BO-
SWA: our bilevel algorithm to optimize both coefficients and hyperparameters. See Appendix B for
the details of the downstream datasets and hyperparameter selections.

Table 1 presents the empirical results obtained on the GLUE dataset using the RoBERTa-base model.
Our approaches consistently demonstrate enhanced or equivalent performance across all datasets.
Notably, the Bilevel-BO-SWA method achieved significantly improved results for the RTE and MRPC
datasets, which are on par with the performance of the Best subset. It is worth highlighting that even
our computationally efficient algorithm, MOBO-SWA, exhibits improved performance compared
to other baseline methods. These results provide strong empirical support for the efficacy of our
proposed techniques in effectively navigating the complexities of the metric landscape. Refer to
Appendix C to see additional experiment results on various ablation studies.

5 Conclusion

In this paper, we empirically observed that the well-known uniform averaging algorithms underper-
form on the NLP tasks due to the discrepancy between the loss and metric landscapes. Then, motivated
by the aforementioned observation, we proposed a novel BO-based bilevel algorithm for model fusion.
Our method utilizes the MOBO and BO frameworks to seek optimal combination coefficients and
hyperparameters, respectively. We validated that our proposed method shows improved performance
on the GLUE dataset using the RoBERTa-base model, compared to other baseline methods.
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A Related Work

Fine-Tuning for Pre-trained Language Models. Pre-trained Transformer-based MLMs such as
BERT [8] and RoBERTa [21], in addition to auto-regressive language models such as GPT [26] and
Llama [34], have had a significant impact on the NLP community recently. The standard procedure
for the use of such models typically involves training a pre-trained model for a few epochs on a
downstream dataset in a supervised fashion. This process is known as fine-tuning. Despite its
straightforward concept, fine-tuning requires the need for various engineering decisions including the
selection of hyperparameters and the identification of suitable checkpoints within an optimization
trajectory. Addressing the challenge of selecting an optimal model among various models derived
from these decisions, one effective strategy is model fusion. This approach combines multiple models
within a parameter space to formulate a single proficient model.

Model Fusion for Pre-trained Language Models. The cost of fine-tuning language models is
significantly high, rendering the straightforward approach of creating Deep Ensemble (DE) [19]
from multiple models and discarding the rest inefficient. On the other hand, a weight averaging
method emerges as a more feasible approach for model fusion, mitigating the inference cost while
retaining the benefits of ensembles. Notably, SWA employs uniform averaging on a single trajectory,
manifesting substantial improvements in generalization within image classification tasks. In the case
by Wortsman et al. [37], the models obtained from multiple trajectories are sorted in descending
order, and the models are greedily selected for participation in uniform averaging. However, as will
be highlighted in § 2, the prior uniform weight averaging methods are found to be inadequate in
language models. By combining the discovered cause and the advantages of previous fusion methods,
we exhibit a generalization effect by identifying the optimal hyperparameters and a subset of SWA
members through a metric-driven BO-based model fusion.

Bayesian Optimization. BO [2, 12] is a promising strategy to optimize a black-box function. In par-
ticular, if a target objective is costly in terms of function evaluations, BO is more effective than other
existing optimization strategies such as grid search and genetic algorithms. Its efficacy has demon-
strated in a wide variety of applications such as hyperparameter optimization [30], nanostructured
device design [13], and chemical reaction optimization [28]. Briefly introducing, BO sequentially
seeks solution candidates by modeling a surrogate function and maximizing an acquisition function.
In the BO community, A GP [27] is often employed as a surrogate function but diverse regression
models such as Bayesian neural networks [32, 20] and tree-based models [15, 18] can be used. As a
choice of acquisition function, expected improvement [17] and GP upper confidence bound [33] are
often considered. See the work [2, 12] for the details of BO.

B Experimental Details

B.1 Datasets

The empirical evaluation utilized several benchmark datasets from the General Language Understand-
ing Evaluation (GLUE) suite [35], each highlighting different aspects of language understanding
tasks. For datasets such as RTE, MRPC, CoLA, and STS-B, we split the original development set
in half, using one half for validation and the other for testing. For SST-2, 1,000 instances were
taken from the training set for validation, while the original development set was used for testing.
We specifically chose datasets that are known to be relatively challenging to tune and unstable [24].
Additionally, to evaluate performance on a larger dataset, we included SST-2.

RTE. The Recognizing Textual Entailment task [6] mandates the model to ascertain whether a
given hypothesis is entailed or contradicted by a corresponding premise, categorizing it as a binary
classification quandary.

CoLA and SST-2. The Corpus of Linguistic Acceptability [36] and the Stanford Sentiment Tree-
bank 2 [31] are single-sentence tasks that necessitate the model to adjudicate linguistic acceptability
and sentiment resonance, respectively. CoLA engages in a binary classification paradigm to appraise
the grammatical acceptability of a sentence, whereas SST-2 entails binary sentiment classification to
discern the sentiment polarity.
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Bilevel-BO-SWA

MOBO-SWA

ValidationTrain Evaluation

Figure 2: Illustration of the bilevel BO pipeline, named Bilevel-BO-SWA. It is composed of two
components: BO for hyperparameter optimization and multi-objective BO for model fusion via convex
combination.

MRPC and STS-B. The Microsoft Research Paraphrase Corpus [10] and the Semantic Textual
Similarity Benchmark [4] require the model to quantify semantic equivalence. MRPC orchestrates a
binary classification paradigm to determine the paraphrastic nature of sentence pairs, while STS-B
mandates scoring the semantic similarity of sentence pairs on a continuous spectrum.

B.2 Experimental Setup

Baselines. In our experimental setup, we choose the pre-trained RoBERTa-base model for fine-
tuning masked language models on the GLUE benchmark. In the RoBERTa-base scenario, each task
is tuned for 20 epochs, and we select the configuration that exhibits the best metric on the validation
dataset. The learning rate is determined through a grid search within [1e-05, 2e-05, 3e-05] , with
a designated batch size of 16 for the CoLA, MRPC, RTE, and STS-B tasks, and 32 for the SST-2
task. The learning rate schedule adheres to a linear decay, complemented by a 0.2 warm-up ratio,
employing the AdamW optimizer [22]. The outcomes are averaged over a set of seeds, specifically
[41, 42, 43, 44]. For SWA, we begin collecting model weights from the point where the baseline
converges, specifically from 75% of this point and perform uniform averaging. The SWA scheduler
employs a cyclic learning rate scheduler [29] with the optimizer, maintaining the same learning rate.
Similar to SWA, Greedy SWA also collects model weights but follows a greedy approach comparable
to Model Soups, collecting models only when there is a performance improvement. Learned SWA
initially collects models, then mix them using coefficients from a probability simplex. The coefficients
are learned by optimizing the loss obtained from this mixed model, selecting the model with the
highest validation metric.

Ours. In the case of MOBO SWA, the number of initial points was set equal to the number of
weight-averaging members, and iterations were performed five times the amount of the initial points.
In the case of the Bilevel-BO-SWA, for the outer BO, the seeds were set to {41, 42, 43, 44}, the
learning rate was set within the range of [1e-06 1e-04], weight decay was in the range of [0.0 0.1], and
batch sizes were set to [8 32]. A total of 10 iterations were attempted, with each iteration comprising
20 epochs, and 10 SWA members were collected in each iteration. For the inner BO, the same settings
as the previous MOBO SWA were used. We present the overall pipeline of Bilevel-BO-SWA as shown
in Figure 2.

C Additional Experiments

Discrepency between Loss and Metric. Table 2 again numerically validate that the conventional
averaging strategies (i.e. SWA and Model Soup) indeed perform well with the loss function but not
with the metric function.
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Table 2: Results on GLUE benchmark for RoBERTa-base. Evaluation results of SWA and naive
fine-tuned model on the RTE, MRPC, SST-2. We used custom validation sets for the evaluation.
Here NLL is the loss function and Error rate is the 1 - Accuracy for the RTE and SST-2, and the
F1 score for the MRPC. The lower value is the better for all the evaluation functions. Please refer
to Appendix B to see how we split the custom validation sets.

Task

RTE MRPC SST-2

NLL (↓) Fine-tune 0.97 ± 0.01 0.54 ± 0.02 0.28 ± 0.00

SWA 0.87 ± 0.03 0.53 ± 0.00 0.22 ± 0.00

Error rate (↓) Fine-tune 21.21 ± 0.69 7.82 ± 0.01 4.94 ± 0.26

SWA 21.71 ± 1.47 7.90 ± 0.01 5.16 ± 0.24

Table 3: Using RoBERTa-base, Performance Analysis of Basic BO on the GLUE Dataset. When
employing BO that focuses solely on a single objective, specifically the metric, it was observed that
MOBO-SWA exhibited commendable effectiveness in comparison to BO-SWA, which takes into
account both the loss and metric.

Method RTE MRPC CoLA STS-B SST-2 Avg.

BO-SWA 77.20 ± 1.97 91.92 ± 0.66 57.56 ± 0.30 89.63 ± 0.05 94.47 ± 0.15 82.16

MOBO-SWA 77.86 ± 0.28 92.05 ± 1.05 58.20 ± 1.72 89.58 ± 0.12 94.55 ± 0.12 82.45

Table 4: Comparative Performance Analysis Applying Outer BO on Various Baselines. The table
shows that Bilevel-BO-SWA outperforms other strategies on RTE and MRPC datasets, according to
key performance metrics.

Baseline SWA Greedy SWA Learned SWA Bilevel-BO-SWA

RTE 77.20 76.68 76.68 78.22 79.60
MRPC 91.41 90.57 90.57 90.03 93.39

Ablation on MOBO and BO. When examining the results presented in Table 3, we assess how
our suggested approach, which relies on MOBO, performs in contrast to the method’s performance
when MOBO is substituted with BO. We utilized a basic BO setting with the Radial Basis Function
(RBF) [3] kernel and Upper Confidence Bound (UCB) [1], optimal averaging weights are determined
in the validation set based on the metric. This method generally underperforms compared to the
MOBO-SWA.

Ablation on the Effectiveness of the Outer BO. Table 4 presents a comparative analysis, focusing
on the efficiency of baselines when employing outer BO. The application of outer BO, for hyper-
parameter optimization, invariably enhances performance across diverse baselines. However, the
proposed Bilevel-BO-SWA conspicuously emerges as superior, exhibiting preeminent performance
in evaluations across the RTE and MRPC datasets compared to other strategies. The synergy realized
through the concurrent application of Bilevel-BO-SWA and outer BO prominently showcases a
compelling scenario of cooperative performance enhancement.
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