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ABSTRACT

Bayesian optimization is a powerful technique for finding extrema
of an objective function, a closed-form expression of which is not
given but expensive evaluations at query points are available. Gaus-
sian Process (GP) regression is often used to estimate the objective
function and uncertainty estimates that guide GP-Upper Confidence
Bound (GP-UCB) to determine where next to sample from the objec-
tive function, balancing exploration and exploitation. In general, it
requires an auxiliary optimization to tune the hyperparameter in GP-
UCB, which is sometimes not easy to carry out in practice. In this pa-
per we present a simple practical method which improves GP-UCB,
especially in cases where the objective function is not smooth with
sharp peaks and valleys. We first present a geometric interpretation
of GP-UCB on which we base our development of the clustering-
guided method to select the next observation. Clustering is applied
to two-dimensional vectors whose entries correspond to the poste-
rior mean and standard deviation computed by GP regression, which
is followed by utility maximization with GP-UCB, in order to deter-
mine where next to sample from the objective function. Experiments
on various functions demonstrate our method alleviates the chance
of being trapped in local extrema, making small efforts for auxiliary
optimization.

Index Terms— Bayesian optimization, black-box function op-
timization, GP-UCB.

1. INTRODUCTION

Bayesian optimization involves finding minima (or maxima) of a
black-box objective function f(x) that is expensive to evaluate:

argmin
x2X⇢RD

f(x), (1)

where X is a compact set. In general, the closed-form expression
of f(·) is not given. A popular approach to solving this prob-
lem is to search a minimum, gradually accumulating observations
D1:t = {(x1, f1), (x2, f2), . . . , (xt, ft)}, evaluated at t sample
points x1, . . . ,xt, with t increasing, where ft = f(xt). We define

Xt = [x1,x2, . . . ,xt] 2 RD⇥t
,

f t = [f1, f2, . . . , ft]
> 2 Rt

.

Bayesian optimization provides an efficient approach in terms of
the number of function evaluations required. To this end, Bayesian
optimization places a prior on the latent function f(·) and combines
it with the likelihood function p(D1:t|f) to calculate the posterior
distribution

p(f |D1:t) / p(D1:t|f)p(f). (2)

This posterior distribution yields an estimate of the objective func-
tion f(·), which is also known as surrogate function, allowing us
to evaluate the value of ft+1 at a new point xt+1 by calculating
the predictive distribution p(ft+1|xt+1,D1:t). A Gaussian Process
(GP) prior with zero mean function and covariance function k(·, ·)
is widely used as a prior over the latent function f(·) in Bayesian
optimization. We define

k>
t (xt+1) = [k(xt+1,x1), . . . , k(xt+1,xt)],

Kt =

2

64
k(x1,x1) · · · k(x1,xt)

...
. . .

...
k(xt,x1) · · · k(xt,xt)

3

75 .

In this paper we use the Matérn class of covariance functions, which
involves a smoothness parameter ⌫ and a length-scale parameter l
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where �(·) is the gamma function and H⌫ is a modified Bessel func-
tion [1].

In practice, due to the possibility of the presence of measure-
ment noise, the noisy observation of the objective function at xt is
considered, i.e., yt = f(xt) + ✏t where ✏t ⇠ N (0, ⇢2) is assumed
to be Gaussian. Naturally, we can define yt = [y1, y2, . . . , yt] for
the noisy observations. With these definitions, the predictive distri-
bution over yt+1 given xt+1 is easily computed:

p(yt+1|xt+1,D1:t) = N
�
µt(xt+1),�

2
t (xt+1) + ⇢

2�
, (3)

where posterior mean µ(·) and variance �
2(·) are calculated as

µt(x) = k>
t (x)

⇥
Kt + ⇢

2I
⇤�1

yt, (4)

�
2
t (x) = k(x,x)� k>

t (x)
⇥
Kt + ⇢

2I
⇤�1

k>
t (x). (5)

We have briefly explained how to estimate the black-box objec-
tive function, placing a prior over the latent function and calculating
the posterior by combining it with the likelihood, in the framework
of GP regression. The next step in Bayesian optimization is to de-
termine where next to sample from the objective function, balancing
exploration and exploitation. Given the posterior mean µ(x) and
standard deviation �(x) computed by GP regression using D1:t, the
maximization of an acquisition function a(x|D) yields the selection
of the next point at which to evaluate the objective function:

xt+1 = argmax
x

a(x|D1:t). (6)

The Upper Confidence Bound (UCB) in the case of GP regression,
which is referred to as GP-UCB, is defined as

a(x|D1:t) = �µ(x) + �(x), (7)



where  is a hyperparameter that controls the tightness of the con-
fidence bounds [2]. Bayesian optimization is summarized in Algo-
rithm 1.

Algorithm 1 Bayesian Optimization with GP regression
Require: Initial data D1:I = {(x1, y1), . . . , (xI , yI)}, and T 2

N > 0
1: for t = 1, 2, . . . , T do
2: Find xI+t that maximizes the acquisition function over the

current GP: xI+t = argmaxx a(x|D1:I+t�1).
3: Sample the objective function: yI+t = f(xI+t) + ✏I+t.
4: Augment the data: D1:I+t = {D1:I+t�1, (xI+t, yI+t)}.
5: Update the GP, computing µI+t(x),�

2
I+t(x):

6: end for
7: return x⇤ = argmaxx2{x1,...,xI+T } µI+T (x)

Bayesian optimization has been used in various problems, in-
cluding hyperparameter optimization [3, 4], networks architecture
optimization [5], molecule-surface interaction optimization [6], and
biological structure recombination optimization [7]. As shown in
Algorithm 1, Bayesian optimization is constituted by two ingredi-
ents: (i) estimating a surrogate function via GP regression; (ii) de-
termining where next to sample from the objective function via the
maximization of an acquisition function (e.g., GP-UCB in this pa-
per). Hyperparameters appearing in GP regression as well as in the
acquisition function should be carefully tuned, which is done by an
auxiliary optimization [8]. However, auxiliary optimization requires
expensive computation, which is often problematic while its conver-
gence is proved [2, 9, 10]. Methods that bypass the auxiliary opti-
mization are also available [11–13].

In this paper we present a simple practical method which im-
proves GP-UCB, especially in cases where the objective function is
not smooth with sharp peaks and valleys. Our method allows for the
model to better explore regions far from the current location in deter-
mining where next to sample from the objective function. Detailed
description of the method is given in the next section.

2. CLUSTERING-GUIDED GP-UCB

In this section we present our main contribution, the clustering-
guided GP-UCB method, in detail. We begin with a novel geometric
view of GP-UCB on which we base our clustering-guided GP-UCB.

2.1. Geometric View of GP-UCB

GP-UCB [2] uses the following acquisition function constructed by
the current GP inferred on D1:t

a(x|D1:t) = �µ(x) + �(x), (8)

where µ is the posterior mean, � is the posterior standard deviation,
and  is the trade-off hyperparameter with its value being increased
gradually as iterations proceed. It determines the next query point
by

xt+1 = argmax
x

a(x|D1:t),

which is expected to have small mean and large variance. We write
the acquisition function as a mapping from µ(x) to �(x):

�(x) =
1


⇣
µ(x) + a(x|D1:t)

⌘
,

where a(x|D1:t)/ is interpreted as a �-axis intercept in the µ-�
space. Fig. 1 illustrates that the maximum of the acquisition function
corresponds to a �-axis intercept whose value is the largest.

Line (i)
Line (ii)

Line (iii)

Line (iv)

Fig. 1. The horizontal axis is the posterior mean µ and the verti-
cal axis is the posterior standard deviation �. Small circles (with
orange color) represent points associated with two-dimensional vec-
tors whose entries are sampled from µ(x) and �(x). Lines (i)-(iv),
described by (9), are cases with different y-axis intercepts. The point
that meets the line (ii) gives the maximal acquisition value.

2.2. Query Point Selection

A query point is determined by searching where the acquisition func-
tion is maximized. As shown in Fig. 1, nearby points in the µ-�
space exhibit similar characteristics in the perspective of posterior
mean and variance. This suggests to group these points into a few
coherent clusters, in order to reduce the search space over which the
GP-UCB acquisition function is maximized. In GP-UCB, the search
space consists of whole possible candidates to be considered. In
contrast, our clustering-guided GP-UCB (CG-GPUCB) reduces the
search space to a set of candidates in a single cluster. Only centers
of clusters are considered to determine which cluster is the best in
terms of the values of �-axis intercepts.

Denote by ci 2 R2 the center of cluster i in the µ-� space, for
i = 1, . . . ,K, where K is the number of clusters pre-specified. The
best cluster is determined by

i
⇤ = argmax

i=1,...,K
[�ci,1 + ci,2] , (9)

where ci,j represents entry j in ci, for j = 1, 2. Denote by Ci

cluster i, then the best cluster corresponds to Ci⇤ . Depending on
how the final query point is selected in the best cluster, we present
two methods:

• CG-GPUCB-NN where the next query point is chosen as the
nearest point to the center of the best cluster;

• CG-GPUCB2 where we consider acquisition values at only
points in the best cluster to finally determine the next query
point.

That is, in CG-GPUCB-NN, the next query point is calculated as

xt+1 = argmin
x2Ci⇤

���[µ(x),�(x)]> � ci⇤
���
2

2
, (10)

where k · k2 is the Euclidean norm. In CG-GPUCB2, the next query
point is calculated as

xt+1 = argmax
x2Ci⇤

a(x|D1:t), (11)
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Fig. 2. Left panel: The upper plot shows the mean function (blue solid line) with the confidence interval (shaded region) measured by the
variance in the current GP. The entire search space is [-6, 6], and the true function (green solid line) has the global optimum at 3.14. Exemplary
candidate points are marked with small circles (orange circles). These candidate points are mapped to corresponding locations in the µ-�
space (the middle panel). The lower plot shows the value of GP-UCB acquisition function over [-6, 6]. Middle panel: Three clusters are
shown in the µ-� space, where each center is x-marked. Right panel: Lines are moving from the line (i) to the line (iv) to see which center
(among three centers) first meets the line, giving the largest value of intercept. The cluster whose center first meets the line is chosen as the
best cluster. The next query point is searched over candidates in the best cluster.

where the search space is restricted to Ci⇤ . The CG-GPUCB algo-
rithm is summarized in Algorithm 2. An example is illustrated in
Fig. 2.

Algorithm 2 Bayesian Optimization with CG-GPUCB
Require: Initial data D1:I = {(x1, y1), . . . , (xI , yI)}, T 2 N >

0, and K 2 N > 0 (number of clusters)
1: for t = 1, 2, . . . , T do
2: Calculate centers ci of K clusters determined in the µ-�

space, given the current GP.
3: Find the best cluster Ci⇤ via (9).
4: Find xI+t by (10) or (11).
5: Sample the objective function: yI+t = f(xI+t) + ✏I+t.
6: Augment the data: D1:I+t = {D1:I+t�1, (xI+t, yI+t)}.
7: Update the GP via (4) & (5).
8: end for

2.3. Hyperparameter Setting

CG-GPUCB-NN and CG-GPUCB2 show the convergence perfor-
mance with various hyperparameter settings, as shown in Fig. 3(a)-
3(d). Fig. 3(a)-3(b) represent both CG-GPUCB-NN and CG-
GPUCB2 have the best result where scaling-down hyperparameter
is 10.0 for the synthetic function, (12). Our methods have another
hyperparameter, the number of clusters for a mixture of Gaus-
sians. We present how the cluster number affects the convergence
performance. As shown in Fig. 3(c)-3(d), the convergence of CG-
GPUCB-NN and CG-GPUCB2 is varied with respect to the number
of clusters. Intuitively, if the cluster number is increased, the min-
imum function value results of CG-GPUCBs will be converged to
the result of GP-UCB, which can be understood that the number of
cluster is data size. Thus, the best configuration for a cluster number
can be found. As in Fig. 3(c)-3(d), CG-GPUCB-NN has the best
result at which 5 clusters are grouped, but CG-GPUCB2 has the best
result at 10 clusters case for the synthetic function.

3. EXPERIMENTS

We applied GP-UCB, CG-GPUCB-NN, and CG-GPUCB2 in a
synthetic function, and Probability of Improvement (PI) [14], PI
MCMC, Expected Improvement (EI) [15], EI MCMC, GP-UCB,
CG-GPUCB-NN, and CG-GPUCB2 in global optimization bench-
marks and real-world problems. The versions of MCMC, PI MCMC
and EI MCMC marginalize out their hyperparameters for GP re-
gression [5]. The details of PI and EI are described in [16]. The
scaling-down hyperparameters of GP-UCB and CG-GPUCBs for
every experiment were searched with the best effort. The mixture
of Gaussians that has three clusters was used. We implemented our
methods based on GPyOpt library [17].

3.1. Synthetic Function

The synthetic function is

y =

8
<

:

�100 if 35.0 < x < 35.5
�200 if 45.0 < x < 45.5

50 sin( 8⇡x
50 ) sin( 3x

100 ) otherwise.
(12)

This function whose range is [0, 100] has a global optimum,
�200 at the second condition. If only the third condition of (12)
existed, then the variations of CG-GPUCB performed slightly better
than GP-UCB. However, if two conditions that make a synthetic
function discrete were added, CG-GPUCBs outperformed rather
than GP-UCB, as shown in Fig. 3(e).

3.2. Global Optimization Benchmarks

The well-known global optimization benchmark functions: Branin-
Hoo, Cosines, Sixhumpcamel, and Eggholder functions were tested
as shown in Fig. 4(a)-4(d). For Branin-Hoo function, all acquisi-
tion functions except PI and EI showed that minimum function val-
ues were converged to almost the global optimum for 200 evalua-
tions. For Cosines function, EI, GP-UCB, and CG-GPUCB2 found
the global optimum for less than 100 iterations. For Sixhumpcamel
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Fig. 3. Function evaluation results with respect to the hyperparameters, scaling-down hyperparameter for  and the number of clusters
(Fig. 3(a)-3(d)). Scaling-down hyperparameter for  was set to 2.0, 5.0, and 10.0 where the number of clusters was fixed to 5 for CG-
GPUCB-NN and 10 for CG-GPUCB2. The number of clusters was also set to 3, 5, 10, and 20 where the scaling-down hyperparameter was
fixed to 10.0. Function evaluation results of GP-UCB and CG-GPUCBs (Fig. 3(e)). All hyperparameters were found with the best effort for
Fig. 3(e).
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(b) Cosines function
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(c) Sixhumpcamel function
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Fig. 4. Seven acquisition functions: PI, PI MCMC, EI, EI MCMC, GP-UCB, CG-GPUCB-NN, and CG-GPUCB2 found global optima of four
benchmark functions: Branin-Hoo, Cosines, Sixhumpcamel, and Eggholder functions for 50 rounds of the experiments. Standard deviation
is not depicted for the clarity of the figures.

function, most acquisition functions, except PI found the global opti-
mum with similar performance. For Eggholder function, EI MCMC
and CG-GPUCB2 converged to almost �900 for 200 function eval-
uations.

3.3. Real-world Problems
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Fig. 5. Two real-world problems: logistic regression and deep con-
volutional networks were optimized with our methods and the exist-
ing methods.

3.3.1. Logistic Regression

Logistic regression, implemented in the Scikit-learn library [18]
was optimized by Bayesian optimization with various acquisition
functions for 50 times. The logistic regression model was trained
and tested on 8⇥ 8 digit images from UCI Repository. Three-
dimensional hyperparameter space composed of regularization,
bias, and stopping tolerance is optimized. EI and CG-GPUCB2

showed almost similar convergence performance, but CG-GPUCB2

was slightly better.

3.3.2. Deep Convolutional Networks

Deep convolutional networks, based on TensorFlow library [19]
return an error rate as an actual response. The networks were
learned and inferred by MNIST dataset. The domain space is
three-dimensional space composed of learning rate, batch size, and
dropout rate. Deep convolutional networks were iterated 10 times.
PI MCMC and EI MCMC were excluded, because they took too
much time to be employed in this problem. A y-axis stands for error
rate of those models. In addition, since the different deep networks
are trained even if the same hyperparameter setting is given, the
error rate of deep convolutional networks at 0 evaluation can differ
as shown in Fig. 5(b). EI and CG-GPUCB-NN converged to near
error rate 0.005% during 50 evaluations.

4. CONCLUSION

We have presented a clustering-guided extension of GP-UCB, where
the maximum of GP-UCB acquisition function is searched over can-
didates in a single cluster chosen by our method while the ordinary
GP-UCB requires the search over candidates in the entire space con-
sidered in the problem. We have based our development on a novel
geometric view of GP-UCB which could be treated as another con-
tribution, in addition to the CG-GPUCB method itself. Depending
on how the final query point is selected in the best cluster, we have
presented two methods: (1) CG-GPUCB-NN where the next query
point is chosen as the nearest point to the center of the best clus-
ter; (2) CG-GPUCB2 where we consider acquisition values at only
points in the best cluster to finally determine the next query point.
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