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ABSTRACT

We present a new method to generate fake data in unknown classes
in generative adversarial networks (GANs) framework. The gen-
erator in GANs is trained to generate somewhat similar to data in
known classes but the different one by modelling noisy distribution
on feature space of a classifier using proposed marginal denoising
autoencoder. The generated data are treated as fake instances in un-
known classes and given to the classifier to make it be robust to the
real unknown classes. Our results show that synthetic data can act as
fake unknown classes and keep down the certainty of the classifier
on real unknown classes meanwhile the classification capability of
known classes is not degenerated, even improved.

Index Terms— Generative adversarial networks, Denoising au-
toencoder, Open set recognition, Feature matching

1. INTRODUCTION

Deep learning has been received much attention in various fields,
and growing faster recently. Among varied machine learning tasks,
image classification task is one of the well-known problems in com-
puter vision and addressed in numerous ways by many researchers
[1, 2, 3]. Some networks were even much deeper or wider than pre-
vious ones and achieved human-level performance [4, 5]. All those
models are trained to classify given data in known classes (positive
data) as a pre-defined known class. Gathering all categories of data,
however, is not possible in practice. The only data we have are lim-
ited number of categories and tremendous other categories are out
there. The difficulty arises when data in unknown classes (negative
data) that is not seen during training is given to the model because
it just assigns given negative data to a particular known class even if
the data does not belong to any of the known classes.

The task of identifying unknown classes can be addressed by
novelty detection or anomaly detection. Although many researches
have been presented to resolve novelty detection and well sum-
marised in [6], it tends to differentiate unknown classes from known
classes while ignoring class labels.

Open set recognition problem was formalised as open set risk
minimisation [7] but its nature is rather straightforward. In open
set recognition, the model should have abilities to classify known
classes and to distinguish unknown classes from known classes at the
same time. To address it, additional novelty detection model could
be employed or one could introduce uncertainty measure (score)
that how much the model is confident on its prediction. Several
choices are possible for uncertainty measure such as entropy of the
model’s prediction [8], maximum of logits (the values before the

softmax function in the last layer), and sophisticated score analysis
[9, 10]. Whatever uncertainty measure was employed, even the sim-
plest one, we would be able to detect unknown classes by explicitly
maximising uncertainty of generated data so-called regularisation,
provided that generating fake data in unknown classes using only
known classes is feasible. If we could design such fake negative
data generator, additional models or complicated score analysis to
detect unknown classes would be no need anymore. The only thing
we need is a classifier that simultaneously classify known classes
and detect unknown classes.

Generative adversarial networks (GANs) [11] seems the most
notable deep generative models these days. In GANs, the genera-
tor and the discriminator are trained adversarially. It generates sharp
and convincing realistic data, although the networks have some prob-
lems including difficulty balancing between the generator and the
discriminator, lack of monitoring convergence measure, and ignor-
ing few modes. If we trained the generator in GANs to generate fake
negative data, the generated data could be used as augmented data
for regularisation of the classifier.

In this paper, we proposed a new objective function for the gen-
erator in GANs to generate synthetic negative data using marginal
denoising autoencoder that models the noisy distributions of positive
data on the feature space of the classifier. The generator trained to
match the noisy distribution could generate fake negative data which
were served effective augmented data for the classifier.

2. RELATED WORKS

Open set recognition and novelty detection both seek to find a way
that differentiates unknown classes from known classes. [9, 10] anal-
ysed a score based on the extreme value theorem (EVT) by fitting
Weibull distribution per instances and classes respectively but it re-
quires lots of classes [9] or lots of instances of each class [10] to
apply EVT. [12] trained null projection matrix to project data in the
same class to a sole point by overcoming a drawback that is the num-
ber of training data should be smaller than the dimension of feature
vector using kernel trick. [13] suggested that regularisation tech-
nique called dropout is a Bayesian approximation and showed that
model uncertainty is obtained easily compared to Bayesian neural
networks. [8] proposed that ensemble of models with adversarial
training leads to lower classification error and a way of measuring
uncertainty. [14] showed that temperature scaling which is simply
scaling logits after training can improve distinguishing performance
of unknown classes. [15] have utilised unlabelled data that is eas-
ily collected to find boundary that minimise empirical, structure and
augment risk but we employed synthetic data and minimise cross



entropy of positive data and minus entropy of synthetic data.
Many variants of GANs have been introduced. [16] proposed

deep convolutional generative adversarial network (DCGAN) which
became guideline for other convolution based GANs. [17, 18, 19,
20, 21] addressed the instability of GANs in various ways. Recently,
AnoGAN was proposed to detect anomalies on medical imaging data
in unsupervised fashion [22]. They proposed two types of scores,
residual score and discrimination score, and combine them to detect
anomalies, yet they rely on vanilla GANs. In contrast, our work is
based on supervised GANs and the generator is trained to generate
fake negative data which regularises the classifier.

3. BACKGROUND

3.1. GANs and semi-supervised GANs

GANs are relatively new frameworks consisting of two networks:
the discriminator D and the generator G. D tries to distinguish be-
tween real data and generated data, and G tries to generate convinc-
ing data to fool D. The minimax objective function for GANs is
formulated as

min
G

max
D

Ex∼pdata(x) [logD (x)] +

Ez∼pz(z) [log (1−D (G (z)))] (1)

where pdata is the data distribution and pz is rather simple prior dis-
tribution such as uniform or normal distribution.

[23] showed that using class labels improves the generated data
qualitatively and quantitatively. They proposed substituting the dis-
criminator D which merely distinguishes real data from generated
data with the classifier C which classify real data as one of known
classes. For labelled data, they trained classifier with cross entropy.
For unlabelled data, they assigned generated class as K + 1 where
K is the number of classes in labelled data and train C and G adver-
sarially as vanilla GANs.

min
C

max
G

−Ex∼pdata(x) [log (1− pC (y = K + 1|x))]

−Ex∼pG(x) [log pC (y = K + 1|x)] (2)

where pC (y|x) is membership probability of C and pG (x) is gen-
erated data distribution of G. Note that D (x) in vanilla GANs is
identical to 1− pC (y = K + 1|x) in semi-supervised GANs.

3.2. Denoising feature matching

Feature matching technique was first introduced in [23] and its pur-
pose is to train G to match the statistics of the real data with the
generated data. The objective function for G in feature matching is

min
G
‖Ex∼pdata(x) [ΦD (x)]− Ez∼pz(z) [ΦD (G (z))]‖2 (3)

where ΦD (·) is feature extractor of D. Feature matching, however,
is less effective because it misses higher-order statistics of feature
distribution of D. [24] presented a new objective function for G
called denoising feature matching. It models the distribution on fea-
ture space of D when evaluated on positive data by denoising au-
toencoder (DAE) and leads significant improvements in objective-
ness of images and inception score [23]. The objective function for
G in denoising feature matching is to minimise the following loss

Ez∼pz(z)
[
‖ΦD (G (z))− r (ΦD (G (z)))‖2 − logD (G (z))

]
(4)

where r(·) is DAE. D is trained with conventional adversarial loss
in vanilla GANs.

4. METHODS

We consider supervised case where all the data and corresponding
labels are given. We have positive datasetDpositive = {(xn, yn)}Nn=1

where yn ∈ Y = {1, 2, . . . , K} and negative dataset Dnegative =

{(xl, yl)}Ll=1 where yl ∈ Y = {K + 1, . . .}, sampled from data
distribution pdata (x, y). Dnegative is only available at test time. We
would like to train a classifier C with Dpositive that can predict a cor-
rect label given positive data and detect negative data by measuring
uncertainty of prediction. This could be achieved by regularising
classifier C with generated data, when G is capable of generating
fake negative data.
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Feature
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Auto-
encoder
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Fig. 1. Overview of our model. Note that two autoencoders share
their parameters.

4.1. Classifier with uncertainty regularisation

Discriminating between real data and generated data is not our con-
cern now. What we want is thatC should have low uncertainty about
positive data and high uncertainty about generated data. To enforce
high uncertainty about generated data on C, we could add entropy
regularisation term to regularise C with generated data. The objec-
tive function for C is

min
C

−Ex,y∼pdata(x,y) [log pC (y|x)]

−Ex∼pG(x) [H (pC (y|x))] (5)

where H (pC (y|x)) is the entropy of membership probability. Note
that we do not explicitly discriminate generated data from real data.

This objective function indicates that C is trained to predict a
label of given positive data and restrain high certainty of generated
data at the same time. If generated data considerably act as negative
data, C would be able to distinguish between known classes and



unknown classes by measuring uncertainty. Note that the choice of
uncertainty measure is entirely up to the practitioners. Instead of the
entropy, one could use negative log likelihood for uncertainty.

4.2. Marginal denoising feature matching

(a) Without regularisation (b) With regularisation

Fig. 2. Decision boundary on feature space of classifier. known
classes: circle, square, triangle. Unknown class: cross. (a) Deci-
sion boundaries for known classes are close to each other and cross
class resides on the same feature space of circle class. (b) Decision
boundaries are tightened resulting in vague space between known
classes. Cross class is more likely on the vague space which implies
high uncertainty.

Modelling whole unknown classes apart from known classes is
not plausible indeed. We want to model relatively compact area
based on observation of classifier. Modern C based on deep net-
works could be divided into two parts: feature extractor which ex-
tracts features from data, and classifier which classifies given fea-
tures into specific classes. The behaviour ofC with unknown classes
is that if negative data are given to C, it would predict them as spe-
cific known classes with low uncertainty (low entropy). This indi-
cates that feature space of negative data was close to feature space
of positive data (Fig. 2 (a)). If we can generate fake feature nearby
feature of positive data and use them to regularise C (tightening de-
cision boundary by entropy maximisation), we would achieve bet-
ter detection performance than C without regularisation. Naı̈ve ap-
proach would be corrupting feature of positive data and using it to
regularise C but feature extractor of C could not be trained end-to-
end with this approach which leads negative data still reside adjacent
to positive data on feature space. We were able to tighten decision
boundary and separate negative data from positive data on feature
space if we could generate fake negative data that reside around fea-
ture space of positive data (Fig. 2 (b)).

To makeG generate such fake negative data, we proposed a sim-
ilar approach used in [24]. DAE tries to restore original input from
corrupted input. When we employ output of DAE as a target for G,
it tries to mimic the statistics of positive data on the feature space
and generates realistic positive data eventually. However, we want
G to generate not the data in known classes but the data in unknown
classes. We introduced marginal denoising autoencoder (MDAE)
which tries to model the noisy distribution of known classes on the
feature space ofC. This implies that MDAE modelsm adjacent fea-
ture space of known classes where m is a hyper-parameter. If output
of MDAE is set as a goal for G, it would generate data similar to
the data in known classes but not the same one that we wanted to
consider them as fake negative data.

Note that vanilla G modelled the distribution of known classes
whereas our G modelled the distribution m away from the one of
known classes. Here, the objective function for G in marginal de-
noising feature matching is

min
G

Ez∼pz(z)
[
‖ΦC (G (z))−M (ΦC (G (z)))‖2

]
(6)

where ΦC(·) is feature extractor of C, M(·) is the MDAE and
M (ΦC (G (z))) is treated as constant, as [24], because it is the
target for G. Note that we do not use adversarial loss. The objective
function for MDAE is

min
M

Ex∼pdata(x)

[
|‖ΦC (x)−M (n (ΦC (x)))‖2 −m|

]
(7)

where n(·) is corruption function and m is a hyper-parameter to set
the margin.

Algorithm 1 Training procedure of GAN-MDFM
Input: θC (parameter of C); θM (parameter of M ); θG (parameter

of G); pz (z); Dpositive; m
1: while until convergence do
2: Sample positive data pair (x, y) from dataset Dpositive.
3: Sample noise z from the given prior pz (z).
4: Generate fake negative data xG from G (z).
5: θC ← θC −∇θC [log pC (y|x) +H (pC (y|xG))]
6: Obtain positive feature φx = ΦC (x).
7: θM ← θM −∇θM |‖φx −M (n (φx))‖2 −m|
8: Sample noise z from the given prior pz (z).
9: Generate fake negative data xG from G (z) and obtain cor-

responding fake negative feature φG = ΦC (xG).
10: θG ← θG −∇θG‖φG −M (φG)‖2
11: end while

4.3. Detection of unknown classes

G was only required to generate fake negative data and it is no more
needed after a training step is completed. Detecting unknown classes
was relatively easy because we simply calculated whatever uncer-
tainty measure we employed to regularise our classifier C (entropy
in our case). After C predicted membership probability given data
x, entropy of the membership probability was easily computed and
treated as uncertainty. We could choose a threshold using validation
set and evaluate whether the uncertainty exceeds the threshold or not
on test data to identify unknown classes.

5. EXPERIMENTS

For all experiments we conducted, the following setup were used.
Although we regularised classifier by only entropy, we measured two
uncertainties: the entropy of membership probability and the maxi-
mum of logits. The corruption function is isotropic Gaussian noise
with σ = 1. The hyper-parameters we used is following: Batch size
was 128, Adam optimisation [25] was used with α = 1e−5, β1 =
0.5, and β2 = 0.999. z is sampled from a uniform distribution [-1,
1] with dimension of 64 for MNIST, 128 for CIFAR10. We followed
the rules suggested in DCGAN [16] and used similar architecture of
theirs for the classifier and the generator. The classifier consists of
convolutional layers and fully connected layers at the end of the net-
work. The generator is composed of fully connected layers which



Table 1. Classification accuracy
Baseline Convex PCA VAE GAN GAN-MDFM

MNIST 0.987 0.986 0.987 0.988 0.991 0.987
CIFAR10 0.707 0.654 0.700 0.702 0.616 0.728

Table 2. Area under the curve
Baseline Convex PCA VAE GAN T-scaling GAN-MDFM

MNIST vs. notMNIST entropy 0.930 0.976 0.907 0.926 0.987 0.938 0.987
max logit 0.885 0.969 0.840 0.865 0.982 0.887 0.991

CIFAR10 vs. CIFAR100 entropy 0.666 0.671 0.656 0.666 0.641 0.707 0.729
max logit 0.696 0.664 0.687 0.691 0.641 0.696 0.721

project and reshape of input at the beginning of the network and
transposed convolutional layers. Marginal denoising autoencoder is
simply stacked fully connected layers with hidden dimension of the
same as input dimension. The margin m is set to the same value as
input dimension.

The baseline is a classifier that have the same architecture of
classifier in GAN-MDFM but it is trained with cross entropy only.
We regularised C with various generating methods to compare with
proposed model. Convex is a method of weighted sum of data.
We performed PCA on each dataset and used principal directions
multiplied by Gaussian noise as fake negative data. Variational au-
toencoder (VAE) [26] and GAN have similar architectures of GAN-
MDFM and we generated fake negative data by sampling z from
higher variance normal distribution or wider range of uniform dis-
tribution than trained prior pz (z). For VAE, z was sampled from
normal distribution with variance of 10 for MNIST and variance of
5 for CIFAR10. For GAN, z was sampled from uniform distribution
[-10, 10] for MNIST and [-5, 5] for CIFAR10. We refer T-scaling
as temperature scaling which is one of post-processing after training
introduced in [14].

(a) MNIST vs. notMNIST (b) CIFAR10 vs. CIFAR100

Fig. 3. Entropy histogram of GAN-MDFM. Positive data have low
entropy and generated data have high entropy as a result of our ob-
jective function for C.

We trained GAN-MDFM with MNIST, CIFAR10 and evalu-
ated the classification accuracy (Table 1). GAN-MDFM did not de-
generate the accuracy at all but even improved on CIFAR10. We
think that the accuracy improvement is because the data generated
by GAN-MDFM could be thought of well-designed augmented data
for regularising classifier that have effect on keeping away from each
known classes resulting in tightening decision boundary on the fea-
ture space.

We evaluated how well GAN-MDFM can distinguish unknown

classes from known classes by area under the curve (AUC). We
trained GAM-MDFM with MNIST, CIFAR10 and evaluated on
notMNIST, CIFAR100 respectively (Table 2). GAN-MDFM outper-
formed baseline and other generating methods on both datasets.

The generated data from GAN-MDFM seemed similar to posi-
tive data but not exactly the same as our purpose (Fig. 4). We showed
random samples after training for other generating methods but for
GAN-MDFM we displayed generated data every 20th epoch per row
through training because GAN-MDFM suffered from mode collaps-
ing problem. However, our concern was not to generate realistic and
diverse data but fake negative data that are sufficient to regularise C.

(a) MNIST samples (b) CIFAR10 samples

Fig. 4. Generated data from various generating methods. Each
2 columns are corresponding to convex, PCA, VAE, GAN, GAN-
MDFM, respectively.

6. CONCLUSIONS

We have proposed a unknown class generator that is able to generate
fake negative data. This was achieved by marginal denoising au-
toencoder that provided a target distribution which is m away from
distribution of positive data on feature space of the classifier to the
generator. The generated data were treated as fake negative data and
provided to the classifier for regularisation resulting in reliable mem-
bership probability as uncertainty measure. We have achieved that
classification accuracy is comparable and even improved because of
the effect of data augmentation. We have showed that the entropy of
membership probability and max logit are fine uncertainty measures,
and AUC was improved compared to other generating methods and
the baseline only trained with cross entropy.
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