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Abstract

We propose a novel approach to learning the generative neural fields represented by
linear combinations of implicit basis networks. Our algorithm learns basis networks
in the form of implicit neural representations and their coefficients in a latent
space by either conducting meta-learning or adopting auto-decoding paradigms.
The proposed method easily enlarges the capacity of generative neural fields by
increasing the number of basis networks while maintaining the size of a network
for inference to be small through their weighted model averaging. Consequently,
sampling instances using the model is efficient in terms of latency and memory
footprint. Moreover, we customize denoising diffusion probabilistic model for a
target task to sample latent mixture coefficients, which allows our final model to
generate unseen data effectively. Experiments show that our approach achieves
competitive generation performance on diverse benchmarks for images, voxel
data, and NeRF scenes without sophisticated designs for specific modalities and
domains.

1 Introduction

Implicit neural representation (INR) is a powerful and versatile tool for modeling complex and
diverse data signals in various modalities and domains, including audio [12], images [35], videos [40],
3D objects [28, 6], and natural scenes. INR expresses a data instance as a function mapping
from a continuous coordinate space to a signal magnitude space rather than using a conventional
representation on a discrete structured space. In particular, a representation with a continuous
coordinate allows us to query arbitrary points and retrieve their values, which is desirable for many
applications that only have accessibility to a subset of the target data in a limited resolution. INRs
replace the representations based on high-dimensional regular grids, such as videos [9] and 3D
scenes [25], with multi-layer perceptrons (MLPs) with a relatively small number of parameters,
which effectively memorize scenes.

Generative neural fields aim to learn distributions of functions that represent data instances as a form
of neural field. They typically rely on INRs to sample their instances in various data modalities
and domains. The crux of generative neural fields lies in how to effectively identify and model
shared and instance-specific information. To this end, feature-wise linear modulation (FiLM) [29]
and hyper-network (HyperNet) [16] are common methods for modulating representations. FiLM
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Figure 1: Overview of the generation procedure using the proposed generative neural field based on
mixtures of neural implicit function (mNIF). Our model is applicable to various types of data such as
images, voxels, and radiance fields. To generate an instance, we first sample a context vector φj from
a prior distribution (Platent) estimated by a denoising diffusion probabilistic model. We then perform
a weighted model averaging on implicit bases {W(i)

m b
(i)
m } using mixture coefficients (α(i)

m ) derived
from the context vector.

adjusts hidden features using an affine transform, which consists of element-wise multiplication and
bias addition. Due to the ease of optimization, the effectiveness of FiLM has already been validated
in several tasks including 3D-aware generative modeling [6, 7]. However, the operation of FiLM is
too restrictive while introducing additional parameters for modulation. On the other hand, HyperNet
is more flexible because it directly predicts network parameters. Unfortunately, the direct prediction
of model parameters is prone to unstable training and limited coverage of the data distribution
generated by the predicted network. Therefore, to reduce solution spaces, HyperNet often employs
dimensionality reduction techniques such as low-rank decompositions of weight matrices [35, 12] and
combinations of multiple network blocks [16]. However, all these works give limited consideration
to the inference efficiency.

Inspired by the flexibility of HyperNet and the stability of FiLM while considering efficiency for
inference, we propose a mixture of neural implicit functions (mNIF) to represent generative neural
fields. Our approach employs mNIFs to construct generative networks via model averaging of INRs.
The mixture components in an mNIF serve as shared implicit basis networks while their mixands
define relative weights of the bases to construct a single instance. Our modulation step corresponds to
computing a weighted average of the neural implicit functions. The mixture coefficients are optimized
by either meta-learning or auto-decoding procedures with signal reconstruction loss. Such a design is
effective for maximizing the expressibility of INRs while maintaining the compactness of inference
networks. The proposed approach is versatile for diverse modalities and domains and is easy to
implement.

Figure 1 demonstrates the overview of the proposed approach, and we summarize the contributions
of our work as follows:

• We introduce a generative neural field based on mNIF, a modulation technique by a lin-
ear combination of NIFs. The proposed approach effectively extracts instance-specific
information through conducting meta-learning or applying auto-decoding procedures.

• Our modulation allows us to easily extend the model capacity by increasing the number of
basis networks without affecting the structure and size of the final model for inference. Such
a property greatly improves the efficiency of the sampling network in terms of inference
time and memory requirements.

• Our model achieves competitive performance on several data generation benchmarks without
sophisticated domain-specific designs of algorithm and architecture configuration.

The rest of this paper is organized as follows. We first discuss related works about generative
neural fields in Section 2. The main idea of the proposed approach and the training and inference
procedures are discussed in Sections 3 and 4, respectively. Section 5 presents empirical quantitative
and qualitative results with discussions, and Section 6 concludes this paper.
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2 Related Work

Implicit neural representations (INR) are often optimized for representing a single instance in a
dataset, and have been extended in several ways to changing activation functions [33, 30], utilizing
input coordinate embeddings [36, 26] or taking advantage of a mixture of experts [37, 23, 24]. Since
the INR framework is difficult to generalize a whole dataset, generative neural fields have been
proposed to learn a distribution of functions based on INRs, each of which corresponds to an example
in the dataset.

Generative manifold learning (GEM) [12] and generative adversarial stochastic process (GASP) [14]
are early approaches to realizing generative neural fields. GEM implements the generative neural field
using the concept of hyper-network (HyperNet) [16], which predicts a neural network representing an
instance. Training GEM is given by the auto-decoding paradigm with manifold learning. However,
GEM involves extra computational cost because the manifold constraint requires accessing training
examples. GASP also employs a HyperNet for sampling instances, and its training utilizes a
discriminator taking an input as a set of coordinate and feature pairs. Since the output of the
discriminator should be permutation invariant, it follows the design of the network for the classification
of point cloud data. However, training GASP is unstable and the discriminator design is sometimes
tricky, especially in NeRF. Functa [13] proposes the generative neural fields with SIREN [33]
modulated by FiLM [29] and introduces a training strategy based on meta-learning. However,
meta-learning is computationally expensive due to the Hessian computation. On the other hand,
diffusion probabilistic fields (DPF) [41] proposes a single-stage diffusion process with the explicit
field parametrization [19]. However, its high computational cost hampers the applicability to complex
neural fields such as NeRF. HyperDiffusion [15], which is concurrent to our work, presents a
framework directly sampling the entire INR weight from the learned diffusion process instead of
exploiting latent vectors for modulating INR weights. However, this work demonstrates instance
generation capability only on voxel domains, not on images.

Model averaging [38] is often used for enhancing performance in discriminative tasks without
increasing an inference cost. Our approach applies model averaging to generative models and verifies
its effectiveness in generative neural fields based on INRs. Note that we are interested in efficient
prediction by learning a compact representation through a weighted mixture; our method jointly
trains basis models and their mixture coefficients.

3 Generative Neural Fields with a Mixture of Neural Implicit Functions

This section describes how to define generative neural fields. The formulation with a mixture of neural
implicit functions (mNIF) enforces implicit basis networks to represent shared information across
examples and allows latent mixture coefficients to encode instance-specific information through a
linear combination of basis networks. We show that generative neural field via mNIF is effectively
optimized to predict the latent vector for the construction of models generating high-quality samples.

3.1 Implicit Neural Representations

Implicit neural representation (INR) expresses a data instance using a function from an input query,
x ∈ Nd, to its corresponding target value, y ∈ Rk. Since each input coordinate is independent of
the others, a mapping function parametrized by θ, fθ(·), is typically represented by a multi-layer
perceptron (MLP) with L fully connected (FC) layers, which is given by

y = fθ(x) = f (L+1) ◦ · · · ◦ f (1) ◦ f (0)(x), (1)

where f (i) for ∀i ∈ {1, 2, . . . , L} denote FC layers while f (0) and f (L+1) indicate the input and
output layers, respectively. Each layer f (i) performs a linear transform on its input hidden state h(i)

and then applies a non-linear activation function to yield the output state h(i+1), expressed as

h(i+1) = f (i)(h(i)) = σ
(
W(i)h(i) + b(i)

)
, i ∈ {1, 2, . . . , L}, (2)

where σ(·) is an activation function and W(i) ∈ RW×W and b(i) ∈ RW are learnable parameters.
The operations of the input and output layers are defined as h1 = f (0)(x) and ŷ = f (L+1)(h(L)),
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respectively. Consequently, a collection of learnable parameters θ in all layers is given by

θ ,
{
W(0),b(0),W(1),b(1), · · · ,W(L+1),b(L+1)

}
, (3)

where W(0) ∈ RW×d, b(0) ∈ RW , W(L+1) ∈ Rk×W , and b(L+1) ∈ Rk. For INR, the mean
squared error between a prediction ŷ and a target y is typically adopted as a loss function, L(·, ·),
which is given by

L(ŷ,y) = ||ŷ − y||2. (4)

Among the variations of INRs, we employ SIREN [33], which adopts the sinusoidal function as an
activation function and introduces a sophisticated weight initialization scheme for MLPs. Supposing
that SIREN is defined with an MLP with L hidden layers, the ith layer of SIREN is given by

h(i+1) = sin
(
w0

(
W(i)h(i) + b(i)

))
, i ∈ {1, . . . , L}, (5)

where w0 is a scale hyperparameter to control the frequency characteristics of the network. The
initialization of SIREN encourages the distribution of hidden sine activations to follow a normal
distribution with a standard deviation of 1.

3.2 Mixtures of Neural Implicit Functions

We propose generative neural fields based on mNIF, which is an extension of the standard INR for
modulating its model weight. We define a set of NIFs, which is used as basis networks, and construct
a generative neural field using a mixture of the NIFs. This is motivated by our observation that a
generative neural field is successfully interpolated using multiple basis networks and model averaging
works well for model generalization [38].

The operation in each layer of our mixture model is given by

h(i+1) = sin

(
w0

(
M∑
m=1

α(i)
m gm(h(i))

))
, (6)

where g
(i)
m (h(i)) = W

(i)
m h(i) + b

(i)
m is the ith-layer operation of the mth neural implicit function,

and α(i)
m is a mixture coefficient of the same layer of the same neural implicit function. Note that

modulating the network is achieved by setting the mixand values, {α(i)
m }. Similar to the definition of

θ described in Eq. (3), the parameter of each mixture is given by

θm ,
{
W(0)

m ,b(0)
m , · · · ,W(L+1)

m ,b(L+1)
m

}
. (7)

The operation in the resulting INR obtained from model averaging is given by
M∑
m=1

α(i)
m gm(h(i)) =

(
M∑
m=1

α(i)
mW(i)

m

)
h(i) +

M∑
m=1

α(i)
m b(i)

m = W
(i)
h(i) + b

(i)
, (8)

where

W
(i)

,
M∑
m=1

α(i)
mW(i)

m and b
(i)

,
M∑
m=1

α(i)
m b(i)

m . (9)

All the learnable parameters in the mixture of NIFs is defined by {θ1, . . . ,θM}. The remaining
parameters are mixture coefficients, and we have the following two options to define them: (i) sharing
mixands for all layers α(i)

m = αm and (ii) setting mixands to different values across layers. The first
option is too restrictive for the construction of INRs because all layers share mixture coefficients while
the second is more flexible but less stable because it involves more parameters and fails to consider
the dependency between the coefficients in different layers. Hence, we choose the second option but
estimate the mixture coefficients in a latent space, where our method sets the dimensionality of the
latent space to a constant and enjoys the high degree-of-freedom of layerwise coefficient setting. To
this end, we introduce a projection matrix T to determine the mixture coefficients efficiently and
effectively, which is given by[

α
(0)
1 , · · · , α(0)

M , α
(1)
1 , · · · , α(1)

M , · · · , α(L+1)
1 , · · · , α(L+1)

M

]
= Tφ, (10)
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whereφ ∈ RH denotes a latent mixture coefficient vector. This choice compromises the pros and cons
of the two methods. Eventually, we need to optimize a set of parameters, θall , {θ1, . . . ,θM ,T} for
a generative neural field, and a latent vector φ to obtain an instance-specific INR.

3.3 Model Efficiency

The proposed modulation technique is based on model averaging and has great advantages in the
efficiency during training and inference. First, the computational complexity for each input coordinate
is small despite a large model capacity given by potentially many basis networks. Note that, even
though the number of neural implicit basis function in a mixture increases, the computational cost
per query is invariant by Eq. (8), which allows us to handle more coordinates queries than the models
relying on FiLM [29]. Second, the model size of our generative neural fields remains small compared
to other methods due to our model averaging strategy, which is effective for saving memory to store
the neural fields.

When analyzing the efficiency of generative neural fields, we consider two aspects; one is the model
size in the context adaptation stage, in other words, the number of all the learnable parameters, and
the other is the model size of the modulated network used for inference. By taking advantage of the
modulation via model averaging, our approach reduces memory requirement significantly both in
training and inference.

4 Learning Generative Neural Fields

The training procedure of the proposed approach is composed of two stages: context adaptation
followed by task-specific generalization. In the context adaptation stage, we optimize all the learnable
parameters for implicit basis functions and their coefficients that minimize reconstruction error on
examples in each dataset. Then, we further learn to enhance the generalization performance of the
task-specific generative model, where a more advanced sampling method is employed to estimate
a context vector, i.e., a latent mixture coefficient vector. This two-stage approach enables us to
acquire the compact representation for neural fields and saves computational costs during training by
decoupling the learning neural fields and the training generative model. We describe the details of the
two-stage model below.

4.1 Stage 1: Training for Context Adaptation

The context adaptation stage aims to learn the basis networks and the latent mixture coefficient vector,
where the mixture model minimizes the reconstruction loss. This optimization is achieved by one of
two approaches: meta-learning or auto-decoding paradigm.

With meta-learning, we train models in a similar way as the fast context adaptation via meta-learning
(CAVIA) [42]; after a random initialization of a latent vector φj for the jth instance in a batch, we
update φj in the inner-loop and then adapt the shared parameters θ based on the updated φj . Since
this procedure requires estimating the second-order information for the gradient computation of θ,
the computational cost of this algorithm is high. Algorithm 1 presents this meta-learning procedure.

We observe that random initialization of a latent vector during meta-learning is more stable than the
constant initialization originally proposed in CAVIA when training mNIF with a large number of
mixture components or the high dimensionality of latent vectors. We intend to diversify INR weights
at the start phase of meta-training, ensuring that not all samples are represented with identical INR
weights.

Auto-decoding paradigm [12, 28] is a variant of multi-task learning, where each instance is considered
a task. Contrary to the meta-learning, we do not reset and initialize the latent vector φj for each
instance but continue to update over multiple instances. The optimization procedure via auto-decoding
is presented in Algorithm 2.

4.2 Stage 2: Optimizing for Task-Specific Generalization

The aforementioned context adaptation procedure focuses only on the minimization of reconstruction
error for training samples and may not be sufficient for the generation of unseen examples. Hence,
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Algorithm 1 Meta-learning with mNIF

1: Randomly initialize the shared parameter θ of mNIF.
2: while training do
3: Sample a mini-batch B = {(cj ,yj)}j=1:|B|.
4: for j = 1 to |B| do
5: Initialize a latent vector φ(0)

j ∼ N (0, σ2I) ∈ RH .
6: for n = 0 to Ninner − 1 do
7: Update the latent vector: φ(n+1)

j ← φ
(n)
j − εlatent∇φL(fθ,φ(cj),yj)|φ=φ

(n)
j
.

8: end for
9: Update the shared parameters: θ ← θ − εshared∇θL(fθ,φ(cj),yj)|φ=φ

(Ninner)
j

.

10: end for
11: end while

Algorithm 2 Auto-decoding with mNIF

1: Randomly initialize the shared parameter θ of mNIF.
2: Initialize a latent vector φj ∼ N (0, σ2I) ∈ RH for all samples.
3: while training do
4: Sample a mini-batch B = {(cj ,yj)}j=1:|B|.
5: Define a joint parameter: φB = {φj}j=1:|B|
6: Update the parameters: {θ,φB} ← {θ,φB} − ε∇θ,φB

∑
j L(fθ,φ(cj),yj)|φ=φj

7: end while

we introduce the sampling strategy for the context vectors φ and customize it to a specific target task.
To this end, we adopt the denoising diffusion probabilistic model (DDPM) [18], which employs the
residual MLP architecture introduced in Functa [13].

5 Experiments

This section demonstrates the effectiveness of the proposed approach, referred to as mINF, and
discusses the characteristics of our algorithm based on the results. We run all experiments on the
Vessl environment [2], and describe the detailed experiment setup for each benchmark in the appendix.

5.1 Datasets and Evaluation Protocols

We adopt CelebA-HQ 642 [21], ShapeNet 643 [8] and SRN Cars [34] dataset for image, voxel and
neural radiance field (NeRF) generation, respectively, where 642 and 643 denotes the resolution of
samples in the dataset. We follow the protocol from Functa [13] for image and NeRF scene and
generative manifold learning (GEM) [12] for voxel.

We adopt the following metrics for performance evaluation. To measure the reconstruction quality, we
use mean-squared error (MSE), peak signal-to-noise ratio (PSNR), reconstruction Fréchet inception
distance (rFID), reconstruction precision (rPrecision) and reconstruction recall (rRecall). In image
generation, we use Fréchet inception distance (FID) score [17], precision, recall [32, 27] and F1
score between sampled images and images in a train split. Voxel generation performance is evaluated
by coverage and maximum mean discrepancy (MMD) metrics [1] on a test split. In NeRF scene
generation, we use FID score between rendered images and images in a test split for all predefined
views for evaluation. To compare model size of algorithms, we count the number of parameters
for training and inference separately; the parameters for training contain all the weights required in
the training procedure, e.g., the parameters in the mixture components and project matrix for our
algorithm, while the model size for inference is determined by the parameters used for sampling
instances. For the evaluation of efficiency, we measure the number of floating point operations per
second (FLOPS), latency in terms of frames per second (fps), and the amount of memory consumption
for a single sample.
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Table 1: Image reconstruction and generation performance on CelebA-HQ 642. The results of DPF,
GEM, and Functa are brought from the corresponding papers.

Model # Params Reconstruction Generation Inference Efficiency

Learnable Inference PSNR ↑ rFID ↓ FID ↓ Precision ↑ Recall ↑ F1 ↑ GFLOPS ↓ fps ↑ Memory (MB) ↓
Functa [13] 3.3 M 2,629.6 K 26.6 28.4 40.4 0.577 0.397 0.470 8.602 332.9 144.1
GEM [12] 99.0 M 921.3 K – – 30.4 0.642 0.502 0.563 3.299 559.6 70.3
GASP [14] 34.2 M 83.1 K – – 13.5 0.836 0.312 0.454 0.305 1949.3 16.4
DPF [41] 62.4 M – – – 13.2 0.866 0.347 0.495 - - -
mNIF (S) 4.6 M 17.2 K 31.5 10.9 21.0 0.787 0.324 0.459 0.069 2958.6 10.2
mNIF (L) 33.4 M 83.3 K 34.5 5.8 13.2 0.902 0.544 0.679 0.340 891.3 24.4

Table 2: Voxel reconstruction and generation performance on ShapeNet 643. The results of DPF, and
GEM are brought from the corresponding papers.

Model # Params Reconstruction Generation Inference Efficiency

Learnable Inference MSE ↓ PSNR ↑ Coverage ↑ MMD ↓ GFLOPS ↓ fps ↑ Memory (MB) ↓
GASP [14] 34.2 M 83.1 K 0.0296 16.5 0.341 0.0021 8.7 180.9 763.1
GEM [12] 99.0 M 921.3 K 0.0153 21.3 0.409 0.0014 207.0 16.7 4010.0
DPF [41] 62.4 M – – – 0.419 0.0016 - - -
mNIF (S) 4.6 M 17.2 K 0.0161 20.9 0.430 0.0014 4.4 191.5 642.1
mNIF (L) 46.3 M 83.3 K 0.0166 21.4 0.437 0.0013 21.6 69.6 1513.3

5.2 Main Results

We present quantitative and qualitative results, and also analyze the effectiveness of the proposed
approach in comparison to the previous works including Functa [13], GEM [12], GASP [14], and
DPF [41]. Note that we adopt the model configurations with the best generation performance for the
other baselines.

5.2.1 Quantitative Performance

We compare results from our approach, mNIF, with existing methods in terms of four aspects: recon-
struction accuracy, generation quality, model size, and inference efficiency. We present quantitative
results from two configurations of our model, mNIF (S) and mNIF (L), which correspond to small
and large networks, respectively.

As shown in Tables 1, 2, and 3, our approach consistently achieves state-of-the-art reconstruction and
generation quality on the image, voxel, and NeRF scene datasets except the reconstruction on the
voxel dataset, in which our model is ranked second. Moreover, mNIF is significantly more efficient
than other methods in terms of model size and inference speed in all cases. Considering the model
size and inference speed, the overall performance of mNIF is outstanding.

Note that the light configuration of our model denoted as mNIF (S) is most efficient in all benchmarks
and also outperforms the baselines in voxel and NeRF. In SRN Cars, mNIF (S) demonstrates huge
benefit in terms of efficiency compared to Functa; 199 times less FLOPS, 49 times more fps, and 22
times less memory in single view inference. In the image domain, the performance of mNIF (S) is
comparable to GASP in terms of F1 but worse in FID. We conjecture that FID metric overly penalizes
blurry images, which is discussed in several works [12, 13, 31, 20].

5.2.2 Qualitative Generation Performance

Figure 2 illustrates generated samples for qualitative evaluation. We visualize the results from our
models on each benchmark together with GASP on CelebA-HQ 642 and Functa on SRN Cars to
compare results in the image and NeRF scene tasks, respectively. In the image domain, our model,
mNIF (L), generates perceptually consistent yet slightly blurry samples compared to ground-truths,
while the examples from GASP with a similar FID to ours have more artifacts. In the NeRF scene,
rendered views from our model, mNIF (S), and Functa exhibit a similar level of image blur compared
to ground-truths. Since both methods use vanilla volumetric rendering, adopting advanced rendering
techniques, such as hierarchical sampling [25, 6] and anti-aliasing methods [4, 3] for NeRF scenes,
would improve rendering quality.
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Table 3: NeRF scene reconstruction and generation performance on SRN Cars. The results of Functa
are brought from the corresponding papers.

Model # Params Reconstruction Generation Inference Efficiency

Learnable Inference PSNR ↑ FID ↓ TFLOPS ↓ fps ↑ Memory (GB) ↓
Functa [13] 3.9 M 3,418.6 K 24.2 80.3 1.789 2.0 28.0
mNIF (S) 4.6 M 17.2 K 25.9 79.5 0.009 97.7 1.3

mNIF (L)

GASP [14]

Ground Truth

(a) CelebA-HQ 642

mNIF (L)

Ground Truth

(b) ShapeNet 643

mNIF (S)

Functa [13]

Ground Truth

(c) SRN Cars

Figure 2: Comparison of generated samples from our models, mNIF (S) and mNIF (L), with the
ground-truth and the baseline methods such as GASP [14] and Functa [13], on the CelebA-HQ 642

(2a), ShapeNet 643 (2b) and SRN Cars (2c) datasets.

5.3 Analysis

We analyze the characteristics of our trained model for better understanding via latent space explo-
ration and various ablation studies.

5.3.1 Latent Space Interpolation

Figure 3 illustrates the results of interpolation in the latent space; the corner images are samples in
the training dataset and the rest of the images are constructed by bilinear interpolations in the latent
space. These images demonstrate the smooth transition of sampled data, confirming that the latent
vectors learned at the first stage manage to capture the realistic and smooth manifold of each dataset.

5.3.2 Configurations of Mixture Coefficients in mNIF

Table 4(a) examines the performance by varying the types of mixture coefficients: i) shared mixture
coefficients across all layers, i.e., α(i)

m = αm, ii) layer-specific mixture coefficients, and iii) layer-
specific mixture coefficients projected from a latent vector as shown in Eq. (10). Among the three
mixture settings, the last option yields the best performance and is used for our default setting.

Table 4(b) presents the effect of the number of mixtures, denoted by M . Reconstruction performance
generally improves as the number of mixtures increases, but such a tendency saturates at around
M = 256. We also measure the precision and recall between the ground-truth and reconstructed
samples denoted by rPrecision and rRecall, respectively. According to our observation, increasing
the size of the mixture improves the recall more than it does the precision.

Table 4(c) shows the effect of the latent dimension on the reconstruction performance of mNIF.
Increasing the latent dimension H leads to improving the reconstruction performance in both the
train and test splits due to the degree-of-freedom issue.
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(a) CelebA-HQ 642 (b) ShapeNet 643 (c) SRN Car

Figure 3: Reconstructed images via latent vector interpolations. The examples at the four corners
surrounded by green boxes are reconstructed instances using the latent vectors on CelebA-HQ 642,
ShapeNet 643, and SRN Cars. The rest of samples are generated via bilinear interpolations of latent
vectors corresponding to the images at the corners.

Table 4: Ablation study on the mixture coefficient configuration of mNIF on CelebA-HQ 642. Note
that L, W , M , and H denote hidden layer depth, hidden layer width, the number of mixtures, and
the dimensionality of a latent coefficient vector, respectively.

Exp Mixture (L,W,M,H)
# Params Train Test

Learnable Inference PSNR ↑ rFID ↓ rPrecision ↓ rRecall ↓ PSNR ↑ rFID ↓

(a)
Shared (2, 64, 64, 64) 557.2 K 8.7 K 22.20 50.70 0.497 0.003 22.11 55.87

Layer-specific (2, 64, 64, 256) 557.2 K 8.7 K 24.45 38.23 0.461 0.013 24.35 42.65
Latent (2, 64, 64, 256) 623.0 K 8.7 K 25.27 31.67 0.534 0.040 25.09 36.85

(b) Latent

(2, 64, 16, 256) 155.8 K

8.7 K

22.02 53.01 0.433 0.001 21.84 57.23
(2, 64, 64, 256) 623.0 K 25.27 31.67 0.534 0.040 25.09 36.85
(2, 64, 256, 256) 2.5 M 26.64 24.62 0.640 0.134 25.74 32.17
(2, 64, 1024, 256) 10.0 M 26.84 23.71 0.642 0.155 25.85 32.14

(c) Latent
(5, 128, 256, 256) 21.8 M

83.3 K
31.17 10.65 0.890 0.750 25.35 31.58

(5, 128, 256, 512) 22.3 M 32.11 8.96 0.918 0.845 27.92 24.79
(5, 128, 256, 1024) 23.2 M 32.71 8.09 0.935 0.893 29.45 22.05

5.3.3 Diversity in Learned Neural Bases

To investigate the diversity of the basis functions per layer, Figure 4 visualizes the absolute value
of the pairwise cosine similarity between the weight matrices of the basis models. In the cosine
similarity matrices, an element with a small value indicates that the corresponding two neural basis
functions are nearly orthogonal to each other, which serves as evidence of diversity in the learned
basis functions. The visualization also reveals the following two characteristics. First, the lower
layers are more correlated than the upper ones partly because low-level features inherently have less
diversity. Second, a small subset of neural bases have high correlations with others. We hypothesize
that the concentration of high correlation among the small subset of neural bases could be mitigated
by introducing a loss function enforcing orthogonality.

5.3.4 Context Adaptation Strategies

We perform the ablation study with respect to diverse optimization strategies and demonstrate the
resulting reconstruction performance in Table 5. We train small mNIFs with (L,W,M,H) =
(2, 64, 256, 256) on the CelebA-HQ 642 dataset. It is clear that the meta-learning approach using
second-order gradient computation yields favorable results compared to other options. Running more
inner-loop iterations marginally improves performance, but at the cost of additional computational
complexity in time and space. Therefore, we set the number of inner-loop iterations to 3 for all
meta-learning experiments.

Interestingly, the auto-decoding strategy surpasses meta-learning with first-order gradient computation.
Note that auto-decoding is more efficient than other methods in terms of both speed and memory
usage when evaluated under the same optimization environment. This efficiency of auto-decoding is
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layer 1 layer 2 layer 3 layer 4 layer 5

Figure 4: Visualization of the absolute value of cosine similarity between neural basis functions,
observed in five different layers. We compute the similarity of the hidden layers in mNIF (L) trained
on CelebA-HQ 642. Diagonal values in these matrices are set to zero for visualization.

Table 5: Study on context adaptation strategy.

Strategy Second-order Ninner PSNR ↑ rFID ↓
Auto-decoding - - 24.68 34.31

Meta-learning

7 3 22.68 57.27
X 3 26.64 24.64
X 5 26.77 24.37

Table 6: Study on longer training of mNIF.

Epoch Reconstruction Generation

PSNR ↑ rFID ↓ FID ↓
400 32.11 8.96 14.96
800 33.10 7.31 14.30
1200 33.61 6.91 15.25

particularly beneficial for NeRF scene modeling, which requires a large number of input coordinate
queries. Our model runs on a single GPU for training on 8 NeRF scenes per batch while Functa needs
8 GPUs for the same purpose.

5.3.5 Longer Training of Context Adaptation

Table 6 shows the performance of our approach, mNIF, with respect to the number of epochs for the
first stage training under the identical stage 2 training environment. When we train mNIF (L) with
(L,W,M,H) = (5, 128, 256, 512) on the CelebA-HQ 642 dataset, reconstruction performance is
positively correlated with training length but longer training may be prone to overfitting considering
the trend of generalization performance.

6 Conclusion

We presented a novel approach for generative neural fields based on a mixture of neural implicit
functions (mNIF). The proposed modulation scheme allows us to easily increase the model capacity
by learning more neural basis functions. Despite the additional basis functions, mNIF keeps the
network size for inference compact by taking advantage of a simple weighted model averaging,
leading to better optimization in terms of latency and memory footprint. The trained model can
sample unseen data in a specific target task, where we adopt the denoising diffusion probabilistic
model [18, 13] for sampling context vectors φ. We have shown that our method achieves competitive
reconstruction and generation performance on various domains including image, voxel data, and
NeRF scene with superior inference speed.

The proposed method currently exhibits limited scalability beyond fine-grained datasets. We hypothe-
size that the latent space in mNIF trained on a dataset with diverse examples, such as CIFAR-10, is
not sufficiently smooth compared to other datasets to be generalized by adopting a diffusion process.
A possible solution to these challenges is to incorporate local information into the architecture based
on neural implicit representations, as proposed in recent research [39, 5]. We reserve this problem for
future work.
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A Implementation Details

A.1 Benchmark

A.1.1 Images

We use CelebA-HQ dataset [21] for our work. We divide entire images into 27,000 images for train
and 3,000 images for test split which is provided by Functa [13]. We use the pre-process dataset from
the link 1. To measure the quality of generated images, we compute Fréchet inception distance (FID)
score [17], precision and recall [32, 27] between sampled images and images in a train split.

A.1.2 Voxels

We utilize the ShapeNet dataset [8] for 3D voxel generation from IM-Net [10]. It has 35,019 samples
in the train split and 8,762 samples in the test split. The dataset contains a voxel with 643 and 16,384
points extracted near the surface. To evaluate the generative model, we sample 8,764 shapes, which
is the size of the test set, and generate all points in the voxel. Then, we compute 2,048 dimension
mesh features from the voxel following the protocol in [10]. Generation performance with coverage
and maximum mean discrepancy (MMD) metrics [1] is evaluated using Chamfer distance on test
split. We follow the evaluation procotol from generative manifold learning (GEM) [12].

A.1.3 Neural Radiance Field (NeRF)

We adopt SRN Cars dataset [34] for NeRF modeling. SRN cars dataset has a train, validation, and
test split. Train split has 2,458 scenes with 128×128 resolution images from 50 random views. Test
split has 704 scenes with 128×128 images from 251 fixed views in the upper hemisphere.

We adopt the evaluation setting of NeRF scene from functa which utilizes 251 fixed views from the
test split. Consequently, we can compute FID score based on rendered images and images in a test
split with equivalent view statistics.

A.2 Implicit Neural Representation with Mixture of Neural Implicit Functions

A.2.1 Images

We train our mixtures of Neural Implicit Functions (mNIF) on images from train split of CelebA-HQ
642 dataset. Generative implicit neural representation (INR) for image takes 2D input coordinates
(x1, x2) and returns 3D RGB values (yR, yG, yB). During optimization, we use dense sampling,
which queries all input coordinates (4096 = 64× 64) to the network inputs, for image benchmark.
We use mNIF configuration with the number of hidden layers L = 5, the channel dimension of
hidden layers W = 128, the number of mixtures M = 384 and the latent vector dimension H = 512.
throughout our experiments. We use meta learning for training the mNIF on CelebA-HQ 642. We
use Adam [22] optimizer with the outer learning rate εouter = 1.0× 10−4 and batch size 32. We use
a cosine annealing learning rate schedule without a warm-up learning rate. We take the best mNIF
after optimizing the model over 800 epochs with inner learning rates εinner ∈ {10.0, 1.0, 0.1}. The
configuration of mNIF (S) is (L,W,M,H) = (4, 64, 256, 1024) and mNIF (L) (5, 128, 384, 512).
The best performed model uses εinner = 1.0.

A.2.2 Voxels

We train our model on ShapeNet 643 dataset. Our generative neural field for voxel takes 3D input
coordinates (x1, x2, x3) and returns yσ indicating whether queried coordinate are inside or outside.
For model optimization, we use sub-sampling with 4,096 points in a voxel with 643 from the
points. Then, we use all 16,384 points for constructing latent vectors. Note that despite relying
on sub-sampling, the 16,384 points sampled from the near surface of a voxel are dense enough to
effectively represent its content within the voxel. We use meta learning for training the mNIF on
ShapeNet 643. We use mNIF (S) and (L) configuration with (L,W,M,H) = (4, 64, 256, 512) and
(L,W,M,H) = (5, 128, 512, 1024). We take the best mNIF after optimizing the model over 400
epochs with inner learning rates εinner ∈ {10.0, 1.0, 0.1}.

1https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P
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A.2.3 NeRF Scenes

We train our model on SRN Cars dataset. We use a simplified NeRF protocol without a view
dependency on neural fields. So, generative neural field returns 4D outputs, RGB values and density
(yR, yG, yB , yσ), with given 3D input coordinates (x1, x2, x3). We use no activation function for
RGB output and exponential linear unit (ELU) [11] for density output as suggested in Functa. During
optimization, we use sparse sampling with 32 views per scene, 512 pixels per view and 32 points per
ray for each scene. We use auto-decoding procedure for efficient optimization instead of meta-learning
procedure to avoid the cost of second-order gradient computation. In auto-decoding procedure, we
simply harvest latent vectors for the dataset jointly trained during the optimization procedure. We use
mNIF (S) configuration with (L,W,M,H) = (4, 64, 256, 128). We use Adam [22] optimizer with
outer learning rate εouter = 1.0× 10−4 and batch size 8. We use cosine annealing without a warm-up
learning rate for the learning rate schedule. We use inner learning rate εinner = 1.0× 10−4 and use
weight decay on latent vector φj to regularize the latent space as in auto-decoding framework. We
take the best mNIF after optimizing the model over 2000 epochs.

A.2.4 Weight Initialization of mNIF

Weight initialization is crucial for optimizing INR, such as SIREN [33]. We enforce mixture
coefficients at the start as the inverse of the number of mixtures α(i)

m = 1/M to give the equivalent
importance for all implicit bases in mixtures. For latent mixture coefficients, we set bias of projection
matrix into 1/M to satisfy above condition.

A.3 Denoising Diffusion Process on Latent Space

We train unconditional generation models for latent space for image, voxel and NeRF scene for
generating latent coefficients vector. We use the equivalent setting for the training diffusion process
throughout all experiments and benchmarks. We implement DDPM [18] on latent vector space based
on residual MLP [13] from Functa as a denoising model. The channel dimension of residual MLP is
4096 and the number of block is 4. We use Adam optimizer and set learning rate 1.0 × 10−4 and
batch size 32. We train model 1000 epochs on each dataset and schedule the learning rate with cosine
annealing without a warm-up learning rate. We use T = 1000 time steps for diffusion process.

A.4 Libraries and Code Repository

Our implementation is based on PyTorch 1.92 with CUDA 11.3 and PyTorch Lightning 1.5.7.3 Our
major routines are based on the code repositories for Functa,4 SIREN,5 latent diffusion model,6
guided diffusion7 and HQ-Transformer.8 For inference efficiency, we count FLOPS with the fvcore
library9 and check inference time and memory consumption on GPU by PyTorch Profiler.10 The
efficiency of mNIF are evaluated on NVIDIA Quadro RTX 8000.

B Analysis

B.1 Visualization

We provide additional generation examples in Figures 5 and 6 and additional interpolation results of
the proposed algorithm in Figures 7 and 8.

2PyTorch (https://pytorch.org)
3PyTorch Lightning (https://www.pytorchlightning.ai)
4Functa (https://github.com/deepmind/functa)
5SIREN (https://github.com/vsitzmann/siren)
6Latent Diffusion Model (https://github.com/CompVis/latent-diffusion)
7Guided diffusion (https://github.com/openai/guided-diffusion)
8HQ-Transformer (https://github.com/kakaobrain/hqtransformer)
9fvcore (https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md)

10PyTorch Profiler (https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html)
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C Limitations

As discussed in concolusion, we observe that our model has limited scalability beyond fine-grain
dataset; our model works well on reconstruction while not on generation on CIFAR10. To analyze the
generation on CIFAR10, we introduce an alternative sampling scheme to replace the latent diffusion
model described in our main paper. Drawing inspiration from the sampling strategy in generative
manifold learning (GEM), we employed latent space interpolation between two samples: one random
sample from the training set and another random sample from its neighborhood. The resulting context
vector, is formed by a simple interpolation:

φsample = α · φi + (1− α) · φN (i), (11)

where φi denotes context vector for i-th sample in training set, N (i) is a set of indices of the
neighborhood of sample and is sampled from the uniform distribution ranged between 0 to 1.

This sampling by interpolation scheme achieves 59.67 (FID) while sampling from diffusion model
does 84.64 (FID). From the results, two major observations can be made: Sampling through interpo-
lation yields a superior FID score than the latent diffusion model, suggesting issues with the latter’s
interaction with context vectors. The FID score for interpolation sampling, while better than diffusion,
remains suboptimal. The observation that the context vector interpolation is not fully effective for the
CIFAR10 model indicates a less smooth latent space in CIFAR10 compared to other datasets. This
disparity could be impacting the generation quality.

We hypothesize that the limitations of the SIREN [33] architecture might be at the root of these issues.
An INR work [39] categorizes SIREN as an INR with predominantly frequency encodings and a
lack of space resolution, leading to compromised content quality. A separate study [5] underlines
this, stating SIREN’s unsatisfactory generation performance (FID 78.2) when applied to CIFAR10.
This research introduces a new SIREN architecture where biases in hidden layers of INR are varying
with respect to spatial resolution. We anticipate that adopting an INR with spatial information as an
alternative to SIREN will better accommodate diverse datasets, given that our approach—a linear
combination of INR weights—is broadly compatible with various INR methods.

D Broader Impacts

The proposed image model is trained on the CelebA-HQ 642 dataset, which raises the possibility
of unintended bias in the generated human face images due to the biases present in the dataset.
Additionally, when extending the generative neural field model to large-scale datasets, there is a
potential for generating unintended biased contents, although the current version of the work primarily
focuses on small-scale datasets. We acknowledge that these concerns are important themes that
should be thoroughly discussed in the future.
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(a) CelebA-HQ 642

(b) ShapeNet 643

Figure 5: Generated samples from our models trained on CelebA-HQ 642 (5a) and ShapeNet 643
(5b).
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(a) View 0 (b) View 32 (c) View 64

(d) View 96 (e) View 128 (f) View 160

(g) View 192 (h) View 224 (i) View 250

Figure 6: Generated 25 samples with diverse 9 views from our model trained on SRN Cars.

17



(a) CelebA-HQ 642

(b) ShapeNet 643 (intra-class)

(c) ShapeNet 643 (inter-class)

Figure 7: Reconstructed samples from latent vectors for images (7a) and voxels (7b, 7c). Samples with
green boxes are reconstructed instances from latent vectors estimated from train split for each dataset.
The other samples are generated with bilinear interpolation of latent vectors from corner instances. In
the third row 7c, we plot three interpolations with four different classes correspondingly. (left) chair
(top left), cabinet (top right), display (bottom left), sofa (bottom right) (middle) loudspeaker, sofa,
airplane, bench (right) airplane, bench, car, rifle. We use Mitsuba3 renderer for drawing voxel image.
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(a) View 0 (b) View 32 (c) View 64

(d) View 96 (e) View 128 (f) View 160

(g) View 192 (h) View 224 (i) View 250

Figure 8: Reconstructed view images from latent vector for NeRF scene. Image annotated by green
boxes are synthesized instances from latent vectors estimated from SRN Cars train split. We select
9 views from the pre-defined 251 views in test split. The other samples are generated by bilinear
interpolation of samples at the corners.
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