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Abstract

Fine-tuning pre-trained models for downstream tasks is a widely adopted tech-
nique known for its adaptability and reliability across various domains. Despite its
conceptual simplicity, fine-tuning entails several troublesome engineering choices,
such as selecting hyperparameters and determining checkpoints from an opti-
mization trajectory. To tackle the difficulty of choosing the best model, one ef-
fective solution is model fusion, which combines multiple models in a parameter
space. However, we observe a large discrepancy between loss and metric land-
scapes during the fine-tuning of pre-trained language models. Building on this
observation, we introduce a novel model fusion technique that optimizes both
the desired metric and loss through multi-objective Bayesian optimization. In
addition, to effectively select hyperparameters, we establish a two-stage proce-
dure by integrating Bayesian optimization processes into our framework. Experi-
ments across various downstream tasks show considerable performance improve-
ments using our Bayesian optimization-guided method. Code will be available at:
https://github.com/chaeyoon-jang/bomf.git.

1 Introduction

The field of Natural Language Processing (NLP) has significantly advanced with the pre-training of
Transformer-based models on large amounts of texts without supervision. In general, these pre-trained
networks are fine-tuned on supervised downstream tasks to solve particular tasks. The rise of Large
Language Models (LLMs) such as GPT [50] and LLaMA [63] has increased demands for huge memory
and computing during fine-tuning on downstream tasks. In response, low rank approximation methods
such as Low-Rank Adaptation (LoRA) [22] and Quantized Low-Rank Adaptation (QLoRA) [11] have
been adopted recently to fine-tune the LLM. However, the fine-tuning of Pretrained Language Models
(PLMs) exhibits high sensitivity to marginal variations in hyperparameters such as learning rate and
batch size, often leading to training failure and the performance drop of a fine-tuned model [45],
while searching hyperparameters requires a vast amount of resources.

An effective strategy to seek an optimal model among multiple candidates is model ensembling, which
yields impressive performance on generalization and robustness [33]. However, traditional ensemble
methods lead to several drawbacks including the space and computational costs that linearly scale
with the number of models involved. These issues are particularly pertinent for LLMs, since individual
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models are costly to train and test. Therefore, we can alternatively utilize model fusion to aggregate
multiple models into a single proficient model on a parameter space. One of its simplest forms,
known as Stochastic Weight Averaging (SWA) [25], involves taking the average of model parameters
obtained during an optimization process. Despite its simplicity, SWA and its variants have proven
successful across various tasks, notably in computer vision [25, 42, 6, 46]. Recent advancement in
this field is the concept of Model Soups, which has been introduced by Wortsman et al. [70]. This
approach weight-averages a set of models, obtained from multiple fine-tuning runs with different
hyperparameters to create a powerful model that outperforms both individual and ensemble models.

The effectiveness of model fusion has predominantly been explored in the visual domain. For instance,
while Model Soups have shown considerable improvements in image classification, they have not
demonstrated superiority in the NLP tasks [70]. The existing averaging methods like SWA make
use of their ability to encourage a fused model to locate on the center of the flatter area near local
optima [25, 20], as loss landscapes are analogous to metric landscapes in computer vision tasks.
Unfortunately, for PLMs, loss landscapes are substantially mismatched to metric landscapes, so that
the flat loss minimum found by SWA does not necessarily correspond to the flat metric minimum
making a simple averaging method fail to find a superior model.

In this paper, we present a novel model fusion approach with an efficient hyperparameter selection
strategy, denoted as Bayesian Optimization Model Fusion (BOMF), specifically designed to fine-tune
PLMs. To motivate our method, we start by illustrating two empirical analyses. Firstly, we demonstrate
that the existing model fusion techniques are not suitable for PLMs. Secondly, we highlight that the
optimal hyperparameters for PLMs exhibit consistency on varying the number of frozen layers or the
rank used in the LoRA setting [22].

Based on these findings, we introduce our proposed method to build a single model, aggregated
through the weighted combination of individual models. Supposing that evaluation metrics are non-
differentiable, we employ Bayesian Optimization (BO) [5, 18], which is a black-box optimization
technique, in developing our model fusion method. To the best of our knowledge, this is the first
study that utilizes BO in the context of model fusion, in order to achieve the following objectives:

• Utilization of Both Metrics and Loss Functions in Model Fusion. Instead of running BO
with an averaged target metric, we use Multi-Objective Bayesian Optimization (MOBO) that
considers both metrics and loss functions for model fusion. Despite low correlations between
loss and metric values, we find that incorporating loss values still serves as useful guidance.

• Two-Stage Model Fusion. We devise our model fusion process as a two-stage BO procedure.
One is for optimizing hyperparameters in fine-tuning and the other is dedicated to our model
fusion method. The objective of the first stage is to maximize gains from the second stage to
find hyperparameters leading to the optimal fused model after the BO of the second stage.

We demonstrate the effectiveness of BOMF on several NLP tasks, including both Natural Language
Understanding (NLU) and Natural Language Generation (NLG), with RoBERTa, Text-to-Text Transfer
Transformer (T5) and LLaMA. Through these comprehensive experiments, we assess the performance
of BOMF in diverse NLP tasks and uncover the interesting properties of our approach through various
ablation studies.

2 Preliminaries

Problem Setup. In this paper, we explore the process of fine-tuning PLMs using two types of
datasets: a downstream training dataset Dtrn and a validation dataset Dval. Assuming that we are
given a pre-trained set of weights θinit and a trainable set of weights winit for our PLM denoted as
M(θ,w), winit is either a subset of θinit or LoRA weights [22]. Specifically, in the former case, winit
is deliberately selected from θinit. As a special case, winit will be identical to θinit if any layers or
weights are not frozen. Meanwhile, if the LoRA method is employed during the fine-tuning of our
model, winit will be the LoRA weights.

We use K distinct metrics, denoted as f (k)
metric(M,D) for k ∈ [K], to evaluate our model’s performance

on a given task. Each metric f
(k)
metric is typically non-differentiable, while a differentiable loss function

floss is employed for training. Assuming that Dval is similar to the true data distribution, our goal is to
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find the optimal set of trainable weights w⋆ that minimizes the following:

w⋆ = argmin
w∈W

K∑
k=1

f̄
(k)
metric(M(θinit,w),Dval), (1)

where f̄ (k)
metric is a normalized version of f (k)

metric for all k ∈ [K], and W is the space of trainable weights.
However, due to the non-differentiability of the f

(k)
metric functions, conventional approaches resort to

finding approximate solutions using gradient descent or its variants, as shown below:

w̃⋆ = argmin
w∈W

floss(M(θinit,w),Dtrn). (2)

As will be discussed in the subsequent section, misalignment between loss and metric surfaces is
more prominent in PLMs compared to computer vision models. To address this challenge, we propose
a novel method to more adequately make use of {f (k)

metric}Kk=1 and Dval by considering Equation 1.

Model Fusion. In the recent work [25, 70, 53, 54], there has been a growing interest in the use
of weight averaging or model fusion across diverse tasks. This line of research is an effective
strategy to achieve superior performance in downstream tasks, all while managing computational
costs by aggregation of multiple models. In this context, the aggregation of multiple models in-
volves the identification of a set of N fine-tuned trainable weights, denoted as S = {wi}Ni=1.
The objective is to derive a fused weight vector, w̄, by utilizing S, such that w̄ outperforms
all other members in S. This can be expressed as Lmetric(w̄) ≤ argminw∈S Lmetric(w), where
Lmetric(w) :=

∑K
k=1 f̄

(k)
metric(M(θinit,w),Dval).

Model fusion approaches can be categorized into two main types: 1) uniform averaging and 2)
weighted averaging. Uniform averaging methods, e.g., SWA [25], Greedy Soups [70], involve the
straightforward process of uniformly averaging weights within a subset S̄ ⊆ S to obtain an improved
performing weight vector w̄, i.e. w̄ = 1

|S̄|
∑

w∈S̄ w. Here, selecting a suitable subset S̄ is an
important strategy for each method. On the other hand, weighted averaging approaches, e.g., Learned
Soups [70] and Rewarded Soups [54], aim to determine an optimized weight vector w by forming
a convex combination of parameters from S, expressed as w̄ =

∑N
i=1 δiwi, where each averaging

coefficient δi satisfies δi ≥ 0, and
∑N

i=1 δi = 1. While weighted averaging methods offer more
flexibility compared to uniform averaging, they often require additional training to determine suitable
values for the coefficient set δ through gradient descent updates based on the loss function floss.
However, in our proposed method, we suggest a weighted averaging technique that considers not
only the loss function floss but also the metrics {f (k)

metric}Kk=1.

Multi-Objective Bayesian Optimization. BO is a sample-efficient black-box optimization tech-
nique with probabilistic regression. Since we assume that an objective to optimize is unknown, a
surrogate function, which is generally a probabilistic regression model, is estimated instead. The
key desired properties of the surrogate function are attained by considering how a search space is
exploited and explored through its outputs. Utilizing the surrogate function, BO eventually optimizes
a specific form of optimizable function, called an acquisition function; see [5, 18] for details.

On top of generic BO, MOBO is used to solve an optimization problem, involved with K different
competing objectives:

x† = argmin
x

(f1(x), f2(x), . . . , fK(x)). (3)

Supposing that we cannot directly access f1, f2, . . . , fK , probabilistic surrogate models, which are
alternatives to unknown objectives, should be used to determine a next point to evaluate. To find a
solution candidate of Equation 3 using MOBO, we can consider scalarization of either the realizations
of surrogate models or acquisition functions corresponding to multiple objectives [48]. In contrast to
the scalarization method, the maximization of Expected HyperVolume Improvement (EHVI), on a
metric space [16] can be used:

x† = argmax
x

EHVI(x;Y, r), (4)

where a hypervolume is defined as the size of space between the Pareto frontier of n historical
evaluations Y ∈ Rn×K and a reference point r. While the scalarization determines query points
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Figure 1: Visualization of the loss landscape over parameters (Figures 1a and 1c) and the metric
landscape over parameters (Figures 1b and 1d) for both the vision task (Figures 1a and 1b) and the
NLP task (Figures 1c and 1d). The metric is 1−accuracy and F1 score for the vision task and the
NLP task, respectively. In the vision task, we fine-tune the ResNet-50 model [21] pre-trained with
ImageNet-21k [56] on the Caltech-101 dataset [35], while in the NLP task, fine-tuning was performed
on the pre-trained RoBERTa model on the MRPC dataset. The members of the SWA for each figure are
denoted as w1, w2, w3.

by aggregating K outputs with particular (potentially random) coefficients, the hypervolume im-
provement maximization chooses query points that widen the expected hypervolume, which is more
robust to function scales without the sampling distributions of scalarization coefficients. As reported
in the previous work [10, 3], compared to other existing MOBO algorithms, qNEHVI which is a
variant of the EHVI method that evaluates a batch of q points in a parallel manner. Building on
the powerful MOBO algorithm, our model fusion framework is capable of determining averaging
coefficients efficiently reducing the number of evaluations required to find better fused PLMs.

3 Empirical Findings

In this section, we present empirical observations motivating our model fusion strategy. In § 3.1,
we initially illustrate distinct findings: unlike in computer vision tasks, in NLP tasks, there exists a
significant misalignment between the loss and metric surfaces. This misalignment poses a challenge
for straightforward model fusion methods when fine-tuning PLMs. In § 3.2, we find that the optimal
fine-tuned hyperparameters for PLMs analogously align across different architectural configurations
varying the number of frozen layers or variations in rank in the LoRA setting.

3.1 On Misalignment in Loss and Metric Landscapes

The well-known success of uniform averaging, e.g., SWA and Model Soups, in image classification
tasks, has been grounded on the flatness of a loss landscape. As one can see in Figure 1a, the use
of uniform averaging successfully explores minima on the flatter region of the loss landscape using
individual weights close to the flatter region, resulting in enhanced generalization loss on a test dataset.
This generalization effect is similarly observed in the case of the metric landscape, as illustrated
in Figure 1b, owing to the similarity between the loss and metric landscapes. This similarity is the
consequence of the inherent similarity between the loss function and the metric [43]. However, the
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Figure 2: Validation results on the MRPC dataset for RoBERTa: loss (shown in left panels) and F1 score
(in right panels) for varying learning rates, batch sizes, and frozen layers. Optimal hyperparameters
align well across different frozen layers, except when all pre-trained layers are frozen.

domain of language modeling, characterized by semantic, morphosyntactic, and pragmatic intricacies,
requires the evaluation of generalization performance across a diverse array of tasks and metrics [12].
It is unlikely to precisely align these metrics with a training loss function [74, 39], leading to a
misalignment that often results in more complex and less flat surfaces in language tasks compared to
the loss function visually demonstrated in Figures 1c and 1d.

In Figures 1c and 1d, we find that while uniform averaging can reach high generalization performance
based on the loss function, it poorly performs concerning the metric function compared to the best-
performing weight in S . However, Figure 1d shows that even though the uniform averaging of three
weight points degrades the metric performance, better points in terms of higher metric values exist in
the convex set of the three weight points. The empirical results we observe above, which are caused
by the complex and misaligned surface, motivate the need to utilize weighted averaging methods and
seek the optimal combination of averaging weights based on the metric. This does not agree with the
previous findings in vision tasks [70] and Figure 1b which argue minimal performance difference
between the weighted averaging and the uniform averaging. Refer to Appendix C.1 for numerical
results that show the discrepancy between the loss and metric landscapes in PLMs.

3.2 On Hyperparameter Alignment

Discovering the optimal training hyperparameters incurs significant computational costs, particularly
when fine-tuning extensive foundational models [2, 45, 66]. This challenge arises since the ideal set
of hyperparameters tends to vary in tandem with changes in both tasks and model structures.

Surprisingly, our empirical findings reveal a consistent alignment of optimal hyperparameters when
fine-tuning PLMs, regardless of variations in the number of frozen layers or the rank of LoRA. As
illustrated in Figure 2, the alterations in validation loss and metric resulting from changes in the
learning rate or batch size exhibit a similar pattern across different numbers of frozen layers, except
in the case when all pre-trained layers are frozen and only the classifier layer is trained. This proves
that we can decrease computational cost for searching the optimal hyperparameters by tuning on
smaller models with more frozen layers or LoRA with smaller ranks. Refer to Appendix C.2 to see the
additional results when varying the adam beta, learning rate schedule, as well as the case of the LoRA.
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Yang et al. [72] demonstrate that employing a particular model weight initialization method and
learning rate scheduling method, referred to as µ-parametrization, enables the transferability of
certain training hyperparameters (such as learning rate and momentum) varying the width of the
model. However, it is important to note that these results specifically pertain to scenarios where
models are trained from scratch. This distinction is noteworthy as our context involves the fine-tuning
of PLMs. It would be a great future research direction to theoretically analyze this phenomenon.

4 Bayesian Optimization Model Fusion

In this section, BOMF unfolds in three key steps. In § 4.1, we present the process of constructing a set
of fine-tuned trainable weights S, serving as components for model fusion. In § 4.2, we introduce
a method to identify optimal hyperparameters crucial in the construction of the set S based on the
findings explained in § 3.2. Finally, we delve into how we conduct weighted averaging in § 4.3,
following the insights discussed in § 3.1.

4.1 Fusion Member Sampling

To improve the performance of our model through model fusion, it is crucial to carefully create the
set S by employing an appropriate weight sampling method. There are two main types of weight
sampling methods: 1) sampling from multiple training trajectories [70] and 2) sampling from a single
training trajectory with proper learning rate scheduling [25]. However, Wortsman et al. [70] indicate
that, when applying model fusion with samples from multiple training trajectories, the performance
improvement becomes less significant during the fine-tuning of PLMs compared to vision tasks. This
limitation in NLP tasks is attributed to the misalignment in loss and metric surfaces, as discussed
in § 3.1. Furthermore, when employing multiple training trajectories to sample fusion members, the
training computation cost increases linearly in proportion to the number of fusion members. This
poses a significant challenge, particularly in the context of fine-tuning PLMs. For these reasons, in
our approach, we collect our fusion members from a single training trajectory. Since the fine-tuning
process of PLMs involves a small number of training epochs and exhibits rapid convergence [41], we
start gathering fusion members after 50% of the training epochs are completed. This timing is slightly
quicker than the point described in the work [25], which begins collecting after 75% of the training
epochs are concluded. Once we start collecting the fusion members, we proceed to uniformly sample
15 members throughout the remaining training epochs. Refer to Appendix A for more details on the
process of collecting fusion members.

4.2 Hyperparameter Search via Bayesian Optimization
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Figure 3: Correlation between the perfor-
mance of best-performing weights in a train-
ing trajectory and the performance of the
fused model. We fine-tune the RoBERTa
model on the RTE dataset. Each point is
obtained from the evaluation of a single tra-
jectory with varying hyperparameters.

In the construction of a set of fusion members S from
a single training trajectory, the effectiveness of the
training trajectory significantly impacts the ultimate
metric performance of the fused model weight w̄. In
this context, the effectiveness of a training trajectory
refers to the model’s metric performance using the best-
performing weight within that trajectory on the valida-
tion dataset Dval. The correlation in Figure 3 strongly
indicates that the performance of the best-performing
weight is positively correlated with the performance
of the fused weight. Consequently, to achieve the best
performance of the fused weight, it becomes crucial to
identify the set of optimal hyperparameters λ that re-
sults in the most effective training trajectory. However,
two primary challenges arise when searching for the
optimal hyperparameters λ⋆ that yield the best metric
performance: 1) the metric functions {f (k)

metric}Kk=1 are non-differentiable and 2) we need to efficiently
assign computational resources in finding better hyperparameters beyond naïve methods such as grid
search. To remedy these two issues simultaneously, in BOMF, we employ BO to find the optimal set
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of hyperparameters:

λ∗ = argmin
λ

K∑
k=1

f̄
(k)
metric(M(θinit,w(λ)),Dval), (5)

where w(λ) represents the best-performing weight within the training trajectory associated with the
hyperparameter set λ. Here, we utilize Gaussian process (GP) regression [55] and Log-Expected
Improvement [3] as a surrogate function and an acquisition function, respectively. We employ three
randomly initialized sets of hyperparameters as the starting point for BO, conducting 10 iterations of
computations to determine the optimal set λ⋆.

The sequential nature of BO computations can lead to a substantial computational load, particularly in
the context of fine-tuning PLMs. To address this issue and propose a more computationally efficient
BO approach, we draw insights from the observations discussed in § 3.2. The alignment of the best
hyperparameters for fine-tuning between the full model and lightweight models (e.g., frozen layers
model or reduced rank LoRA) allows us to utilize the lightweight model instead of the full model
when seeking the optimal set λ⋆ as follows:

λ⋆ = argmin
λ

K∑
k=1

f̄
(k)
metric(M(θinit, ŵ(λ)),Dval), (6)

where ŵ is the trainable weight of the lightweight model. Refer to § 6 to see how our computationally
efficient method decreases computation time while maintaining performance.

4.3 Multi-Objective Bayesian Optimization for Model Fusion

After completing the construction of the set S with N individual models, the next stage involves
selecting appropriate averaging coefficients δ ∈ [0, 1]N to ensure the enhanced metric performance
of a fused model. To achieve this, we can leverage metrics {f (k)

metric}Kk=1 and apply a BO procedure to
obtain optimal averaging coefficients δ⋆, similar to the optimization process for the hyperparameter
set λ. However, restricting the consideration to metric performance solely on Dval may result in our
fused weights w̄ overfitting to Dval and exhibiting poor generalization to the true data distribution,
due to the complex and sharp nature of the metric landscape which is observed in § 3.1. To tackle
this challenge, when optimizing δ, we propose to minimize both floss and {f (k)

metric}Kk=1 by employing
MOBO identify a Pareto frontier defined as follows:

P =
{
δ⋆ | δ⋆ = argmin

δ

(
l(δ), l1(δ), . . . , lK(δ)

)}
, (7)

where l(δ) := f̄loss(M(θinit, w̄(δ)),Dval) and lk(δ) := f̄
(k)
metric(M(θinit, w̄(δ)),Dval) for k ∈ [K].

Note that w̄(δ) denotes a fused set of weights with an averaging coefficient vector δ, i.e., w̄(δ) =∑N
i=1 δiwi where wi ∈ S for i ∈ [N ] and N is the number of models to fuse.

Here, we utilize the EHVI strategy, which is described in the work by Emmerich et al. [16]. The
hypervolume, in this context, is defined as a volume size between P and a reference point r. We set
the reference points as a zero vector. To enhance the optimization of the hypervolume improvement
objective, we employ the logarithmic form of qNEHVI algorithm [10, 3], which is implemented with
the BoTorch framework [4]. As highlighted in § 2, this algorithm has proven effective in practical
multi-objective optimization scenarios. This makes it well-suited to handle the complex and sharp
nature of our metric landscape, enabling it to successfully identify the optimal δ⋆. We run MOBO for
a total of 5|δ| = 75 iterations to find the optimal coefficients δ⋆.

In our case, additional constraints are in place for executing MOBO, specifically 1) equality constraints
and 2) inequality constraints for δ. To address the inequality constraints (i.e., δi ≥ 0), we follow the
work by Gardner et al. [17] to incorporate constraints into the acquisition function. To deal with the
equality constraints

∑N
i=1 δi = 1, we simply normalize the output of the acquisition function. Refer

to Algorithm 1 in Appendix B for the summary of BOMF.

5 Related Work

Model Fusion for Pre-Trained Language Models. Due to the increasing number of model
parameters in recent PLMs, there has been a significant increase in both memory requirements and
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Table 1: Results on Medium-Sized Language Models. We conduct the text classification task using
RoBERTa-base on a subset of the GLUE benchmark datasets, and the question-answering task using
T5-base on the SQuAD2.0 dataset. ACC, F1, and EM denote accuracy, F1 score, and Exact Match,
respectively.

ROBERTA-BASE T5-BASE

METHOD RTE (ACC) MRPC (F1) SST-2 (ACC) QNLI (ACC) QQP (F1) MNLI (ACC) SQUAD2.0 (F1/EM)

GRID FINE-TUNE 77.78 92.39 94.87 92.62 88.16 87.41 78.18/72.83

HPBO (FULL) 78.57 92.78 95.11 93.01 88.58 87.46 78.28/73.29
SWA 78.62 92.24 95.42 92.81 88.49 87.41 80.31/74.85
OTFUSION 77.08 92.82 94.27 92.22 88.34 87.43 80.75/74.99
GREEDY SWA 80.70 92.83 95.54 93.16 88.64 87.45 80.63/75.44
LEARNED SWA 81.40 92.81 95.31 92.94 88.38 87.41 80.65/74.23
TWA 81.23 91.58 95.54 93.00 87.85 87.42 80.29/74.79

BOMF† (OURS) 81.75 93.37 95.65 94.83 88.66 87.51 80.82/75.79
BOMF (OURS) 81.40 93.90 95.54 93.50 88.68 87.86 81.82/76.21

computational costs [73, 8, 63]. Consequently, there is growing attention on a research direction
aimed at enhancing the performance of PLMs while simultaneously managing computational costs
and memory requirements through the exploration of model fusion methods [54, 71, 9]. However,
most of these studies have focused on fusing the models fine-tuned on different tasks, aiming to
develop a single multi-task learner. In the context of a single-task fine-tuning scenario within PLM,
it has been observed that the previous simple weight-averaging approaches often yield marginal
improvements [70, 27]; nevertheless, the exploration into the underlying rationale of this consequence
remains limited. As mentioned in § 3, we find that uniform weight averaging does not always align
generalization on the loss surface with the optimal point on the metric surface, primarily due to
the discrepancy between loss and metric landscapes. To address this issue, we develope a single-
task model fusion method based on MOBO, finding the optimal weight combination coefficients by
considering both metrics and loss functions.

Bayesian Optimization. BO [5, 18] is a promising strategy to optimize a black-box function. In
particular, if a target objective is costly in terms of function evaluations, Specifically, BO sequentially
seeks solution candidates by modeling a surrogate function and maximizing an acquisition function.
In the BO community, a GP [55] is often employed as a surrogate function but diverse regression
models such as Bayesian neural networks [61, 38] and tree-based models [23, 30] can be used. As
a choice of acquisition function, expected improvement [26] and GP upper confidence bound [62]
are often considered. Importantly, BO is more effective than other existing optimization strategies
such as grid search and genetic algorithms [64]. Its efficacy has been demonstrated in a wide variety
of applications such as hyperparameter optimization [58], nanostructured device design [31], and
chemical reaction optimization [57]. Moreover, in the deep learning context, the necessity for efficient
hyperparameter tuning via BO has risen following the increasing number of hyperparameters and
parameters in models [59]. Consequently, BO is applied for hyperparameter optimization in various
deep learning tasks, such as image classification [28, 34] and NLP tasks [44, 7].

6 Experiments

In this section, we present empirical results demonstrating the effectiveness of BOMF in various
NLP tasks. We compare our method to five basic algorithms aimed at finding a high-performing
solution. Grid Fine-Tune is a simple fine-tuning method that selects the best-performing checkpoint
using grid search. HPBO utilizes optimal hyperparameters obtained by § 4.2 for fine-tuning the
baselines. SWA is an optimization technique that averages model parameters obtained during training.
Greedy SWA is a modified version of SWA inspired by Greedy Soups [70], sorting weights based on
metric performance on Dval and including them in S̄ only if they improve w̄’s performance. Learned
SWA, inspired by Learned Soup [70], learns the coefficients δ based on the loss after fine-tuning.
For medium-sized language models, we tested a variant of Transformer OTfusion [24], aligning
pre-trained weights before averaging. Additionally, we experimented with TWA [36], a recent SWA
variant that reconstructs S by finding weight space basis vectors and learns δ based on the loss.
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Table 2: Results on Large Language Models. We compare the results of BOMF and baseline methods
using the SAMSum and KorMCQA datasets for summarization and medical multiple choice question-
answering tasks with LLaMA2-7B and LLaMA3-8B. R1, R2, and RL denote Rouge-1, Rouge-2, and
Rouge-L scores for summarization. Doctor, Nurse, and Pharm denote evaluation results for medical
question answering in each respective field, using accuracy as the metric.

(a) Summarization (SAMSum)

METHOD R1 R2 RL AVG.

HPBO (RANK 64) 52.66 28.22 44.33 41.73
SWA 51.81 27.61 43.55 40.99
GREEDY SWA 53.40 28.06 43.31 41.49
LEARNED SWA 52.93 28.97 44.04 41.98

BOMF† (OURS) 53.40 28.78 44.38 42.19
BOMF (OURS) 53.07 28.61 44.40 42.03

(b) Korean Medical Question Answering

METHOD DOCTOR NURSE PHARM AVG.

ICL 37.89 50.15 50.00 46.01

HPBO (RANK 64) 43.62 54.64 51.49 49.92
SWA 43.96 54.64 51.97 50.19
GREEDY SWA 43.97 54.64 51.98 50.20
LEARNED SWA 44.06 54.94 52.28 50.43

BOMF† (OURS) 45.00 55.70 52.97 51.22
BOMF (OURS) 45.31 55.37 52.80 51.16

In all tables, the best performance is indicated with boldfaced underline, while the second-best
value is represented with underline in each column. The final column ‘Avg.’ provides a summary
of overall results for each method across various datasets or metrics. The terms ‘Full’ and ‘Freeze’
in Table 1 specify the exploration of optimal hyperparameters using either the entire model or a model
with half of its weights frozen, as discussed in § 4.2. Similarly, the terms ‘Rank 64’ and ‘Rank 4’
in Table 2a denote that we use the Rank 64 or the lightweight Rank 4 version of the LoRA model for
the hyperparameter search, respectively. See Appendix A for the details of downstream datasets and
hyperparameter selection.

6.1 Empirical Analysis on Medium-Sized Language Models

We begin by evaluating the effectiveness of BOMF on medium-sized language models using RoBERTa-
base [40] and T5-base [51]. For RoBERTa-base, we performed text classification tasks using the
GLUE benchmark datasets [65]. For T5-base, we carried out the question-answering task with the
SQuAD2.0 [52] dataset. For both models, we fine-tuned the weights directly on the downstream
datasets.

Table 1 shows that BOMF consistently outperforms other baselines across all model structure and
datasets.3 Notably, the performance of HPBO, which uses hyperparameters obtained from § 4.2
with the full model, surpasses Grid Fine-Tune for most datasets. These results demonstrate that our
BO-based hyperparameter search framework effectively discovers optimal hyperparameters compared
to grid search. Refer to Appendix C.4 for the performance of freeze HPBO, which uses a lightweight
model for hyperparameter optimization. Freeze HPBO also clearly outperforms Grid Fine-Tune
which proves the effectiveness of our BO-based hyperparameter search. Also, it is evident that model
fusion methods, except BOMF, lead to performance declines compared to HPBO, as discussed in § 3.1,
in certain datasets. On the contrary, BOMF consistently betters the performance compared to HPBO,
yielding that our method with MOBO effectively finds optimal δ⋆ even in complex and sharp metric
landscapes. Refer to Table 16 for the complete results.

6.2 Empirical Analysis on Large Language Models

We further validated the effectiveness of our proposed method by fine-tuning larger models using
LoRA. Specifically, we experimented with LLaMA2-7B and LLaMA3-8B on tasks such as summa-
rization using the SAMsum [19] dataset, Korean multi-choice medical question answering using the
KorMCQA [32] dataset, and dialogue generation using the E2E [47] dataset. In the summarization
task, while Learned SWA exhibited the best performance in terms of Rouge-2, BOMF surpassed
Learned SWA in average performance across all metrics, as illustrated in Table 2a. Notably, for
Rouge-L, only BOMF improved over HPBO, highlighting the effectiveness of the multi-objective
approach in BOMF. Furthermore, as shown in Table 2b, our model not only outperforms other base-
lines but also demonstrates that fine-tuning remains essential for specific tasks despite the rise of

3A † symbol indicates results from the trajectory found using full HPBO, while results without the symbol
indicate trajectories found using freeze HPBO.
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in-context learning (ICL) [14]. This highlights the necessity of BOMF, which efficiently identifies
hyperparameters and provides an effective fine-tuning solution through model fusion. The results for
E2E can be found in Appendix C.4.

6.3 Ablation Study

Table 3: Results on the Varying Number of
Frozen Layers. Comparison of the number of
parameters and relative training wall-clock time
per epoch when optimizing hyperparameters
across different numbers of frozen layers, us-
ing RoBERTa-base fine-tuned on the RTE and
MRPC datasets.

TASK PARAMS RELATIVE TIME RTE MRPC

GRID FINE-TUNE 125M ×1 77.78 92.39

FULL 125M ×1 78.57 92.78
FREEZE 2 110M ×0.53 78.50 92.39
FREEZE 4 96M ×0.44 78.34 92.36
FREEZE 6 82M ×0.34 78.49 92.72

Number of Frozen Layers. To analyze the ef-
ficiency of memory and compute when using a
lightweight model in the BO procedure to find λ⋆,
we conduct a study using RoBERTa-base on the
RTE and MRPC datasets. As presented in Table 3,
the use of a lightweight model successfully iden-
tifies favorable hyperparameters that yield good
performance while reducing the number of param-
eters by up to 25% and the computation time by
up to 66%. This efficiency is achieved by caching
outputs from the frozen layers. By systematically
freezing layers from the tail of the model, we can
cache the outputs from these frozen layers and
reuse them during the training process.

Table 4: Comparison of Using Multi-Objective
and Single-Objective Approaches. Results of
BOMF and single-objective BO baselines with
T5-base fine-tuned on the SQuAD2.0 dataset.

METRIC F1 EM AVG.

F1 ONLY 81.01 75.09 78.05
EM ONLY 80.40 75.87 78.13
BOMF 80.82 75.79 78.31

Multiple Objectives. To validate the efficacy of
using multiple objectives when determining opti-
mal δ, we compare BOMF with single-objective
baselines using T5-base on the SQuAD2.0 dataset.
In this task, we consider two metrics: F1 score and
Exact Match. Table 4 shows that relying on only
one specific metric slightly increases the objec-
tive metric but results in a significant performance
drop for the other metric. This outcome suggests
that using single-objective BO is appropriate when aiming to find a model optimized for a specific
metric, while the use of MOBO is more suitable for discovering an optimal fused model that achieves
high performance across various metrics. Refer to Appendix C.3 for further ablation studies.

7 Conclusion

In this paper, we empirically remarked two intriguing findings on loss and metric landscapes and
hyperparameter alignment. Then, motivated by the observations mentioned above, we proposed a
novel BO-based BOMF algorithm for model fusion. Our method utilizes the BO and MOBO frameworks
to seek optimal fine-tuning hyperparameters and averaging coefficients, respectively. We validated
that our proposed method exhibits improved performance on both NLU and NLG tasks on middle- and
large-scale PLMs.

Limitations and Future Work. As discussed in § 3.2, compelling future research involves the the-
oretical analysis of the hyperparameter alignment phenomenon. Moreover, we empirically observed
that when utilizing quantization-based low-rank approximation methods [11, 37], traditional uniform
averaging methods and weighted averaging methods face challenges in effectively aggregating mod-
els. These challenges arise from the quantized weight values in the models that behave differently
with averaging weights. Another research direction is the development of averaging methods for the
quantization-based low-rank approximation methods.
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A Details of Experiments

Our implementation leverages key libraries, including PyTorch 2.0.1 [49], Huggingface Transform-
ers [69], and BoTorch [4], to construct a robust framework for our experiments. These experiments
are rigorously conducted on high-performance computing hardware, specifically NVIDIA RTX 3090
and NVIDIA RTX A6000 GPUs, to ensure the efficiency and scalability of our models. To further
bolster the reproducibility of our results, we meticulously set and documented all experiment seeds,
enabling precise replication of our experimental conditions and findings.

A.1 Medium-Sized Language Models

Table 5: Detailed RoBERTa experimental setup.

CATEGORY DETAILS

MODEL SPECIFICATIONS

ARCHITECTURE TRANSFORMER

PRE-TRAINING ROBERTA-BASE

OPTIMIZER ADAMW

SCHEDULER LINEAR SCHEDULER WITH WARMUP

WARMUP RATIO 0.2 IF RTE OR MRPC ELSE 0.1

LEARNING RATE [1E-06, 1E-04]

BATCH SIZE [8, 16] IF RTE OR MRPC ELSE [32, 64]

EPOCHS 20 IF RTE ELSE 10

TASK SPECIFICATIONS

TASK NAME CLASSIFICATION

DATASET SUBSET OF GLUE BENCHMARKS.

For the RoBERTa model, we evaluated the performance for classification and utilized a subset of
the GLUE benchmark [65]. This benchmark serves as a comprehensive evaluation of a language
model’s overall NLU capabilities. The Recognizing Textual Entailment (RTE) task, which employs
neutral and contradiction instances to assign a not-entailment label, is a binary classification task
comprising 2,490 training instances and 277 validation instances. The Microsoft Research Paraphrase
Corpus (MRPC) [13] consists of sentence pairs and corresponding labels. This task involves binary
classification to determine whether a pair of sentences are semantically equivalent, utilizing the F1
score as the metric due to label imbalance. This dataset contains a total of 3,668 training and 408
validation instances. The Stanford Sentiment Treebank (SST-2) [60] includes movie reviews with
associated positive/negative labels. The task is binary classification to discern the sentiment of a given
sentence as positive or negative, with 67,349 training and 872 validation instances. The Stanford
Question Answering Dataset (QNLI) [52] is a question-answering task composed of paragraph-
question pairs, where one sentence in the paragraph contains the answer to the human-generated
question. This dataset comprises 104,743 training and 5,463 validation instances. The Quora Question
Pairs dataset (QQP) [67] involves determining whether two questions are semantically equivalent,
again using the F1 score as the metric due to label imbalance, with 363,846 training and 40,430 test
instances. Lastly, The Multi-Genre Natural Language Inference Corpus (MNLI) [68] is labeled for
textual entailment across genre pairs, primarily consisting of premise and hypothesis sentence pairs.
This task predicts the relationship between these sentences in three categories. The dataset includes
392,702 training and 9,815 validation instances, of which we used the matched case of the validation
set. We conducted experiments by selecting two datasets from each GLUE benchmark based on their
size scale. Additionally, specific details on the fine-tuning methods can be found in Table 5.
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Table 6: Detailed T5 experimental setup.

CATEGORY DETAILS

MODEL SPECIFICATIONS

ARCHITECTURE TRANSFORMER

PRE-TRAINING T5-BASE

OPTIMIZER ADAMW

LEARNING RATE [1E-06, 1E-04]

BATCH SIZE [32, 64]

GRADIENT ACCUMULATION STEP 2

EPOCHS 3.0

TASK SPECIFICATIONS

TASK NAME Question Answering

INPUT TEXT “question: {question} context: {context}”

LABEL TEXT “{answer}”

DATASET SQUAD2.0

MAX NEW TOKENS 10

For the T5-base model, we utilize the Stanford Question Answering Dataset (SQuAD 2.0) [52].
This dataset comprises 130,319 training pairs and 11,873 validation pairs of questions and answers.
The dataset can be accessed through the Hugging Face datasets library.4 Details on our fine-tuning
procedures are provided in Table 6. Furthermore, we assess the generated answers by adhering to the
code established in the official SQuAD 2.0 repository.5

A.2 Large Language Models

In our experiments with the LLaMA2-7B6 model, we focused on two tasks: summarization and
dialogue generation. For the summarization task, we employed the Samsung Abstractive Messenger
Summarization (SAMSum) dataset [19], which consists of 14,732 training samples, 818 validation
samples, and 819 test samples. For the dialogue generation task, we selected the End-to-End NLG
Challenge (E2E) dataset [47]. This dataset includes 42,061 training samples, 4,672 validation samples,
and 4,693 test samples. Details of our fine-tuning process are provided in Table 7. Notably, in the
case of the E2E dataset, the test set typically contains around five common inputs with a variety of
labels. To save time, we conducted a generate process for one common input and used the different
labels as multiple references to calculate the metrics. Consequently, for evaluation, the sentences
generated by the model are based on a unique label, totaling 630 sentences. This accounts for the
discrepancy in experimental performance between our study and that presented in the original paper
of the E2E dataset [47]. All metrics including BLEU, METEOR, and ROUGE were computed using
the Huggingface evaluate library.7

To demonstrate that fine-tuning is still necessary in specific domains and to show the effectiveness of
our method in finding the best model under these circumstances, we conducted evaluations using the
Korean Medical Multiple Choice Question Answering (KorMCQA) dataset [32]. For batch learning,

4https://huggingface.co/datasets/squad_v2
5https://rajpurkar.github.io/SQuAD-explorer
6https://huggingface.co/meta-llama/Llama-2-7b-hf
7https://huggingface.co/evaluate

17

https://huggingface.co/datasets/squad_v2
https://rajpurkar.github.io/SQuAD-explorer
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/evaluate


Table 7: Detailed LLaMA2-7B experimental setup.

CATEGORY DETAILS

MODEL SPECIFICATIONS

ARCHITECTURE TRANSFORMER

PRE-TRAINING LLAMA-2-7B

LORA ALPHA 16

LORA DROPOUT 0.1

OPTIMIZER ADAMW

LEARNING RATE [1E-06, 1E-03]

BATCH SIZE [16, 32]

GRADIENT ACCUMULATION STEP 2

EPOCHS 2

TASK SPECIFICATIONS

TASK NAME SUMMARIZATION

PROMPT "Summarize the following dialogue that is delimited

with triple backticks."

DATASET SAMSUM

TASK NAME DIALOGUE GENERATION

PROMPT "Generate a natural language description for the following

restaurant attributes."

DATASET E2E

NATURAL LANGUAGE GENERATION DETAILS

TOP-P 0.9

TEMPERATURE 1E-12

MAX NEW TOKENS 100

we used text segments with a maximum sequence length not exceeding 512 tokens. Consequently, the
train, test, and validation sets for doctors contained 1,890, 285, and 164 examples, respectively; for
nurses, the train, test, and validation sets contained 582, 291, and 291 examples; and for pharmacists,
the train, test, and validation sets contained 692, 614, and 300 examples, respectively. For in-context
learning, we provided examples within this length limit, and for classification fine-tuning, we used
a linear head. For this, we used the LLaMA3-8Bs model, the latest multilingual open-source large
language model. This version was downloaded from this link.8 More specific details about the model
and experiments can be found in Table 8.

A.3 Bayesian Optimization

Details of HPBO. In the HPBO experiments, the number of iterations varied depending on the size
of each dataset. Specifically, 20 iterations were conducted for the RTE dataset, while 10 iterations

8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table 8: Detailed LLaMA3-8B experimental setup.

Category DETAILS

MODEL SPECIFICATIONS

ARCHITECTURE TRANSFORMER

PRE-TRAINING LLAMA-3-8B-INSTRUCTION

LORA ALPHA 16

LORA DROPOUT 0.0

OPTIMIZER ADAMW

LEARNING RATE [1E-06, 1E-03]

BATCH SIZE [8, 16]

GRADIENT ACCUMULATION
STEP

2

EPOCHS 10

TASK SPECIFICATIONS

TASK NAME KOREAN MEDICAL QUESTION ANSWERING

PROMPT 다음은의사면허시험의의료질문입니다.
질문을읽고올바른답을선택하세요.

항문압측정검사에서항문압력이증가하는경우는?

A. 직장질루 (RECTOVAGINAL FISTULA)
B. 항문열창 (ANAL FISSURE)
C. 대변실금 (FECAL INCONTINENCE)
D. 대변메막힘 (FECAL IMPACTION)
E. 직장탈출증 (RECTAL PROLAPSE)

답:

DATASET KORMCQA

were carried out for the MRPC, SST2, and QNLI datasets. For the QQP and MNLI datasets, 8
iterations were performed. In addition, the SQuAD 2.0, SAMSum, and E2E datasets each underwent
10 iterations. These iteration counts were determined based on the respective sizes of the datasets. For
single metric tasks, the chosen objective was the single valid metric itself. Conversely, for multi-metric
tasks, the objective was the sum of all valid metrics.

Details of Sampling Fusion Members. We collected fusion members at step intervals ranging
from 0.5 to 2.0 times the point of convergence identified in the training trajectory which represented
B in Algorithm 1, adjusting the process to yield approximately 15 members in total. Additionally, for
the RoBERTa model, we employed PyTorch’s official SWA scheduler with cosine annealing. For the
T5 and LLaMA models, we do not use any additional scheduler for collecting SWA members.

Details of MOBO. In the case of MOBO, we initially provided the length of the fusion member
and conducted iterations five times the total number of fusion members. This approach follows the
common practice in BO of determining the initial points and the number of iterations based on
the input dimension, allowing for the option to perform more iterations for improved performance.
Furthermore, due to the differing scales of the loss and each metric, we applied min-max normalization
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Algorithm 1 Bayesian Optimization Model Fusion

Require: Training set Dtrn, validation set Dval, initial pre-trained weights θinit, initial hyperparame-
ters λinit.

Ensure: Optimized hyperparameters λ∗, combination coefficients δ∗.

1: Initialize modelM with θinit, Optionally freeze layers and cache intermediate features.
2: Initialize BO with GP model, starting with λinit

and prior dataH0 = (λinit,
∑K

k=1 f̄
(k)
metric(M(θinit,w(λinit)),Dval)).

3: for i = 1 to I iter do
4: Define LogEI using current GP.
5: Find λi by optimizing LogEI.
6: TrainingM(θinit,w) with (Dtrn, λi).
7: Evaluate

∑K
k=1 f̄

(k)
metric(M(θinit,w(λi)),Dval).

8: Update GP model with new data (λi,
∑K

k=1 f̄
(k)
metric(M(θi,w(λi)),Dval)).

9: end for
10: Collect λ∗ = argminλ

∑K
k=1 f̄

(k)
metric(M(θinit,w(λ)),Dval)

11: B∗ ← argminB f̄
(k)
metric(M(θinit,wB(λ

∗)),Dval)
12: S ← {}.
13: for j = 1 to J step do
14: OptimizeM(θinit,wj) with (Dtrn, λ∗).
15: if j ≥ 0.5B∗ then
16: S ← S ∪M(θinit,wj)
17: end if
18: end for
19: Set reference point r.
20: Linit ← {f̄loss(M(θinit, w̄(δinit)),Dval), f̄

(1)
metric(M(θinit, w̄(δinit)),Dval), · · ·

, f̄
(K)
metric(M(θinit, w̄(δinit)),Dval)}

21: Initialize MOBO with GP models, starting with w̄init and prior dataH0 = (w̄init, δinit,Linit).
22: Compute initial Pareto optimal set P0 usingH0.
23: for m = 1 to M iter do
24: Define EHVI using current GPs.
25: Find δm by optimizing EHVI. Equation 4
26: L ← {f̄loss(M(θinit, w̄(δm)),Dval), f̄

(1)
metric(M(θinit, w̄(δm)),Dval), · · ·

, f̄
(K)
metric(M(θinit, w̄(δm)),Dval)}

27: Update GPs with new data (δm,L)
28: Update Pm.
29: end for
30: Collect δ∗ = argmaxδ EHVI(δ;L, r)

to adjust the scales, utilizing the lowest value of single model performance obtained after the
convergence point in the trajectory collection of members, rounded to the nearest value, as the
minimum. The maximum values were determined by adding 0.1 for metric and 1.0 for loss respectively
to this minimum value for use as the maximum. If there is a more critical metric or criterion, one
can freely modify the optimization by placing weights according to the user’s intent. No additional
weights were applied in our experiments.

B Proposed Algorithm

In this section, we provide an overview of the complete process of BOMF encapsulated in the algorithm.
Algorithm 1 systematically incorporates all three steps: 1) hyperparameter search via BO as detailed
in § 4.2, 2) fusion member sampling as outlined in § 4.1, and 3) identification of optimal δ⋆ and
model fusion through MOBO in § 4.3.
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Figure 4: Visualization of the loss landscape over parameters (a) and the metric landscape over
parameters (b) for the vision task. The metric is accuracy error. We fine-tune the ImageNet-21k
pre-trained ViT-B/16 [15] model on the Caltech-101 dataset. The members of the SWA for each figure
are denoted as w1, w2, w3. Here we can see similar trends with the ResNet-50 case.

Table 9: Spearman’s rank correlation coefficient value of (a) ResNet18 model on the CIFAR10 dataset,
(b) ViT-B/16 model on the Caltech101 dataset, (c) RoBERTa-base model on the SST-2 dataset, (d)
T5-base model on the SQuAD2.0 dataset, and (e) LLaMA2-7B model on the E2E dataset. Here we
used 15 fine-tuned weights for each task to measure the Spearman’s rank correlation. A higher value
indicates a higher correlation between metric and loss value.

METRIC (A) (B) (C) (D) (E)

SPEARMAN’S RCC 0.6182 0.6558 0.1430 0.2150 0.2286

C Additional Experiments

In this section we demonstrate additional experiments not included in the main article.

C.1 Additional Experiments on Loss and Metric Landscapes

We also explored the potential loss metric discrepancy in PLMs, which might originate from the
inherent features of transformer attention or from the use of adaptive optimizers. To analyze deeper,
we visualize the loss-metric surface of the ViT-B/16 model per-trained on ImageNet-21k, using Adam
optimizer which is the same as the optimizer of our language model. According to Figure 4, unlike
in PLMs, the optimal points for loss and performance metrics in the ViT-B/16 model were aligned,
indicating a distinct behavior between language and vision transformers in this context. Additionally,
we have also undertaken the measurement of Spearman’s rank correlation between loss and metric
values across a range of models and tasks in both NLP and CV domains. Table 9 clearly shows that
the correlations in NLP tasks are less than in CV tasks.

C.2 Additional Experiments on Hyperparameter Alignment

In our experiments utilizing LoRA, we aimed to verify whether the optimal hyperparameters align
when using a smaller rank to reduce costs, compared to using a larger rank. Figure 5 demonstrates
that the optimal batch size and learning rate align even when the number of LoRA ranks varies. In
addition to these hyperparameters, we investigated the potential alignment of the beta parameter of
the Adam optimizer, which is the standard optimizer for training large language models, as well as
the scheduler.

Figure 6 and Figure 7 indicate that, with the exception of the scenario where all layers are frozen, the
optimal beta parameter of the Adam optimizer consistently aligns regardless of the number of frozen
layers or the LoRA rank. Figure 9 and Figure 10 suggest that the optimal points of different learning
rate schedules can be aligned according to the number of frozen layers.

These results indicate that by employing a lightweight model, we can identify the optimal hyperpa-
rameters, thereby simplifying the hyperparameter optimization process and reducing computational
time.
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(b) Validatoin metric results for the varying learning
rate and the number of LoRA rank.

Figure 5: Validation loss and metric (F1 score) results for the varying hyperparameter ((a) batch
size, (b) learning rate) and the number of LoRA rank for the RoBERTa on MRPC dataset. (a) and (b)
indicate that the optimal hyperparameters consistently align well across different numbers of LoRA
rank.

(a) Validation metric (Accuracy) for varying beta pa-
rameters and frozen layers.

(b) Validation loss for varying beta parameters and
frozen layers.

Figure 6: Results for the RoBERTa-base model on the RTE dataset. (a) and (b) indicate that the optimal
hyperparameters align well across different numbers of frozen layers, except when all pre-trained
layers are frozen.

C.3 Additional Ablation Experiments

Metric Function in Multi-Objective Bayesian Optimization. In the § 3, we pointed out the issues
of existing methods that perform fusion based solely on loss, particularly due to the discrepancy
between metric and loss in language models. We demonstrated that our method outperforms the
learned-SWA method, which relies only on loss. To strengthen our claim, we additionally compared
the loss and metric values between optimization processes with and without metrics. Specifically, we
examined the loss and metric values of weights along the training trajectory between the initial point
and the optimized point of Learned SWA and BOMF. Figures 9 and 10 show that BOMF generates
complex trajectories for both loss and metric, exploring solutions based on both criteria. In contrast,
Learned SWA, relying solely on the loss function, gets trapped in local minima around the starting
point, failing to discover the optimal solution. This suggests that BOMF’s exploration property and
the inclusion of metrics help escape local minima and discover more robust solutions.

Loss Function in Multi-Objective Bayesian Optimization. BOMF adopts both loss and metric as
objectives when optimizing δ. This approach is based on the understanding that the loss provides a
macroscopic guide for overall metric performance. As seen in Figure 1, the solution of SWA is optimal
on the loss surface but not on the metric surface. In contrast, BOMF performs well on both the loss and
metric surfaces. These results indicate that BOMF ensures a high correlation between loss and metric
values, preventing overfitting to either loss or metric during validation and enhancing the robustness
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(a) Validation metric (Accuracy) for varying beta pa-
rameters and LoRA ranks.

(b) Validation loss for varying beta parameters and
LoRA ranks.

Figure 7: Results for the RoBERTa-base model on the RTE dataset. (a) and (b) highlight that optimal
hyperparameters align well across different numbers of LoRA ranks, emphasizing the importance of
parameter tuning.

(a) Validation metric (Accuracy) for varying learning
rate schedule methods and frozen layers.

(b) Validation loss for varying learning rate schedule
methods and frozen layers.

Figure 8: Results for the RoBERTa-base model on the RTE dataset. (a) and (b) demonstrate that
optimal hyperparameters are consistent across different numbers of frozen layers, indicating the
critical role of hyperparameter choices.

of the weights on the test dataset. This clearly shows that including the loss function provides more
useful guidance than optimizing δ exclusively in a complex and sharp metric landscape.

Moreover, as demonstrated in Tables 10 and 11, our approach, which utilizes both loss and metric,
improves the correlation between them. This leads to reaching the point of optimal performance, as
shown in Tables 14, 15 and 17. These findings support that BOMF outperforms Bayesian optimization
using a single metric without the loss function.

Multiple Metric Functions in Multi-Objective Bayesian Optimization. For tasks with multiple
metrics, we optimized using all the available metrics. Therefore, it is important to investigate how
multiple metrics impact the optimization process. In Table 4, we validated this through performance
evaluations, but we also assessed changes in correlation. Table 11 shows that optimizing with a single
metric can weaken the correlation between the loss and other metrics.

Impact of the Better Trajectories in Model Fusion Performance BOMF aims to construct the
best-performing single model through model fusion within a parameter space. As detailed in § 4.1,
different combinations of fine-tuning hyperparameters (such as learning rate and batch size) yield
varied generalization performances after the fine-tuning process. Therefore, to identify the best-
performing single model after the model fusion, we must first determine the optimal hyperparameters
that yield the best-performing single model before the fusion. In Table 14, we can confirm that the
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Figure 9: Visualization of the evolution of loss throughout the optimization phases. We conduct
experiments on the RTE dataset with the RoBERTa-base model. Learned SWA, an optimization process
without metrics, tends to converge to local minima close to the starting point. Conversely, BOMF
exhibits a more successful exploration, incorporating metrics, and ultimately discovers a more robust
solution.

Figure 10: Visualization of the evolution of metric throughout the optimization phases. We conduct
experiments on the RTE dataset with the RoBERTa-base model. Like the loss, Learned SWA tends
to converge towards local minima without enhancing metric performance after the convergence. In
contrast, BOMF effectively navigates through explorations to discover a high-performing solution.

performance of the final BOMF, executed after finding good hyperparameters through outerbo, is
better than the fusion performance executed with hyperparameters obtained from grid search.

Performance of Conventional Optimization Strategies for Each Task. Additionally, we con-
ducted experiments to directly compare the original optimizers with BOMF. We found the optimal
hyperparameters for the original optimizers using BO and then performed experiments on subsets of
the GLUE dataset using the RoBERTa model and the SAMSum dataset using the LLaMA2-7B model.
The results presented in Table 12 clearly demonstrate that BOMF outperforms the best performance
achievable with any of the original optimizers.

Additional Experiments with BOMF Using LLM-Based Evaluation To validate BOMF’s perfor-
mance under diverse evaluation metrics, we conducted experiments using a ChatGPT-3.5-Turbo-based
approach. This method involves scoring by asking the LLM to assess the similarity between generated
responses and ground-truth answers. Using this, BOMF was benchmarked against other models. As
shown in Table 13, BOMF consistently outperformed these baselines, highlighting its capability to
adapt not only to traditional metrics but also to newer evaluation techniques.
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Table 10: Spearman’s rank correlation coefficient value between loss and metric for the various
optimization processes in the middle scale tasks. Here, we assess the correlation of the RoBERTa-base
model on the MRPC dataset (a) and the RTE dataset (b). Additionally, we examine the correlation
between loss and metric of the T5-base model on the SQuAD2.0 dataset using the F1 score (c) and
the EM (d) metrics. We conduct evaluations on a total of 100 sampled sets for (a) and (b), and 30
for (c) and (d). Here, Loss BO SWA and Metric BO SWA denote the approach where we exclusively
employ either the loss function or the metric during the MOBO process, respectively.

METRIC (A) (B) (C) (D)

BASELINE (HPBO) 0.1640 0.3256 0.2076 0.3021
LOSS BO SWA 0.1903 0.4334 0.4210 0.4710
METRIC BO SWA 0.2465 0.3755 0.5333 0.5000
BOMF 0.5189 0.5886 0.6500 0.6000

Table 11: Spearman’s rank correlation coefficient value between loss and metric for the various
optimization processes in large-scale tasks. We evaluate the LLaMA2-7B on the SAMSum dataset.
Here, Loss BO SWA and Metric BO SWA denote the approach where we exclusively employ either the
loss function or the metric during the MOBO process, respectively.

METRIC R1 R2 RL AVG.

BASELINE (HPBO) 0.4024 0.2000 0.1030 0.2351
LOSS BO SWA 0.5335 0.1306 0.1197 0.2613
METRIC BO SWA 0.5330 0.6060 0.6060 0.5817
BOMF 0.6445 0.6152 0.6137 0.6245

Table 12: Results of BOMF and Other Neural Network Optimization Strategies on Various
Datasets. A higher value is better for all the metrics.

GLUE (ROBERTA-BASE) SAMSUM (LLAMA2-7B)

OPTIMIZATION STRATEGY RTE (ACC) MRPC (F1) SST2 (ACC) R1 R2 RL

SGD 54.37 88.90 90.11 50.63 19.34 41.24
ADAMW 78.49 92.72 94.41 52.25 27.52 44.03
SWA 76.70 91.73 94.75 52.21 27.58 44.04
SAM 77.34 92.56 94.77 52.75 28.55 44.16
BOMF 81.40 93.90 95.54 53.07 28.61 44.40

This robustness is further reinforced by BOMF’s design, which combines loss with multiple metrics,
enhancing its generalizability across unseen metrics. Notably, BOMF leverages BO for tuning
combination coefficients, optimizing based on evaluation values rather than backward processing
through the metrics themselves. This approach allows BOMF to efficiently optimize coefficients
across complex evaluation settings, as shown in the ChatGPT BOMF column in Table 13.

These findings underscore BOMF’s adaptability, demonstrating its resilience across varied evaluation
frameworks, including those generated by LLMs.

C.4 Full Experimental Results

In this section, we present full experimental results encompassing text classification tasks for
the Masked Language Model (MLM) and question answering, summarization, and dialogue gen-
eration tasks for the autoregressive LLM. In all tables, the best performance is indicated with
boldfaced underline, and the second-best value is represented with underline for methods that use the
same best hyperparameters by § 4.2. The final column ‘Avg.’ provides a summary of overall results
for each method across various datasets or metrics. The terms ‘Full’ and ‘Freeze’ in Tables 14 and 15
specify the exploration of optimal hyperparameters using either the entire model or a model with half
of its weights frozen, as discussed in § 4.2. Similarly, the terms ‘Rank 64’ and ‘Rank 4’ in Tables 16
and 17 denote that we use the Rank 64 or the lightweight Rank 4 version of LoRA model for the
hyperparameter search, respectively.
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Table 13: Evaluation Results Using ChatGPT-3.5-Turbo. (a) Baseline, (b) SWA, (c) Greedy SWA,
(d) Learned SWA, (e) BOMF, and (f) ChatGPT BOMF.

EVALUATION PROMPT EXAMPLE

YOU ARE AN AUTOMATED GRADING ASSISTANT HELPING A TEACHER GRADE STUDENT
ANSWERS.

THE CORRECT SUMMARY FOR THIS TEXT IS: <GROUND-TRUTH>
A STUDENT SUBMITTED THE SUMMARY: <PREDICTION>

THE STUDENT’S SUMMARY MUST BE CORRECT AND SPECIFIC BUT NOT OVERCOMPLETE.
SMALL DIFFERENCES IN FORMATTING SHOULD NOT BE PENALIZED. ON A SCALE FROM 0 TO
100, WHERE 0 MEANS COMPLETELY INCORRECT AND 100 MEANS COMPLETELY CORRECT,
HOW SIMILAR IS THE STUDENT’S SUMMARY TO THE GROUND TRUTH? PLEASE PROVIDE
ONLY A NUMERICAL SCORE WITHOUT ANY EXPLANATION.

(A) (B) (C) (D) (E) (F)
GRADE 70.74 71.92 72.05 71.80 72.64 73.18

Table 14: Full Results on Text Classification Task Using RoBERTa-base. Results of BOMF and
baseline methods with GLUE benchmark datasets. ACC and F1 denote metrics for each dataset,
representing accuracy and F1 score, respectively.

DATASET AVG.
METHOD RTE (ACC) MRPC (F1) SST-2 (ACC) QNLI (ACC) QQP (F1) MNLI (ACC)

GRID FINE-TUNE 77.78 92.39 94.87 92.62 88.16 87.41 88.93
GRID SEARCH INNER BO 79.66 92.48 95.31 92.79 88.24 87.54

HPBO (FULL) 78.57 92.78 95.11 93.01 88.58 87.46 89.25
SWA 78.62 92.24 95.42 92.81 88.49 87.41 89.17
GREEDY SWA 80.70 92.83 95.54 93.16 88.64 87.45 89.72
LEARNED SWA 81.40 92.81 95.31 92.94 88.38 87.41 89.71
TWA 81.23 91.58 95.54 93.00 87.85 87.42 89.44
BOMF (OURS) 81.75 93.37 95.65 94.83 88.66 87.51 90.30

HPBO (FREEZE) 78.49 92.72 94.41 92.71 88.04 87.45 88.97
SWA 76.70 91.73 94.75 93.21 88.35 87.44 88.70
GREEDY SWA 80.01 93.38 95.20 93.30 88.67 87.84 89.73
LEARNED SWA 78.79 93.56 95.20 93.03 88.43 87.55 89.43
TWA 78.29 92.16 94.87 92.86 88.59 87.44 89.03
BOMF (OURS) 81.40 93.90 95.54 93.50 88.68 87.86 90.15

Text Classification. Table 14 demonstrates the consistently better performance of BOMF over other
baselines that employ the same best hyperparameters. These findings affirm the effectiveness of
BOMF in the context of single-metric NLP tasks.

Question Answering. Table 15 presents the complete experimental results for the question-
answering task. BOMF consistently surpasses other baselines utilizing the same best hyperparameters.
These outcomes prove the effectiveness of BOMF in the realm of multi-metric NLP tasks, improving
both F1 and EM metrics concurrently.

Summarization. Table 16 provides empirical evidence that BOMF achieves the highest average
performance across evaluated metrics. While Learned SWA and Greedy SWA exhibit the best
performance results in R1 and R2 metrics, respectively, they experience declines across other metrics.
However, our approach demonstrates a consistent improvement across all metrics. These results prove
the efficacy of BOMF in multi-metric NLP tasks.

Dialogue Generation. Table 17 provides full experimental results for the dialogue generation task.
The results for BOMF showcase the highest scores for all metrics in both cases of rank 64 and rank 4.
Despite the conflicting correlations between BLEU and METEOR metrics [29, 1], BOMF achieves
comprehensive improvements across all metrics, distinguishing itself from other baselines that fail to
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Table 15: Full Results on Question-Answering Task with T5-base. Results of BOMF and baseline
methods with SQuAD2.0 dataset. F1 and EM denote the F1 score and Exact Match, respectively.

METHOD F1 EM AVG.

HPBO (FULL) 78.28 73.29 75.79
SWA 80.31 74.85 77.58
GREEDY SWA 80.63 75.44 78.03
LEARNED SWA 80.65 74.23 77.44
TWA 80.29 74.79 77.54
BOMF (OURS) 80.82 75.79 78.31

HPBO (FREEZE) 78.19 73.43 75.81
SWA 81.21 75.63 78.42
GREEDY SWA 81.73 76.20 78.97
LEARNED SWA 81.24 75.65 78.45
TWA 81.21 75.61 78.41
BOMF (OURS) 81.82 76.21 79.01

Table 16: Full Results on Summarization Task with LLaMA2-7B. Results of BOMF and baseline
methods with SAMSum dataset. R1, R2, and RL denote Rouge-1, Rouge-2, and Rouge-L, respectively.

METHOD R1 R2 RL AVG.

HPBO (RANK 64) 52.66 28.22 44.33 41.73
SWA 51.81 27.61 43.55 40.99
GREEDY SWA 53.40 28.06 43.31 41.49
LEARNED SWA 52.93 28.97 44.04 41.98
BOMF (OURS) 53.40 28.78 44.38 42.19

HPBO (RANK 4) 52.25 27.52 44.03 41.27
SWA 52.21 27.58 44.04 41.28
GREEDY SWA 53.06 28.99 44.03 42.03
LEARNED SWA 52.10 26.76 44.13 41.00
BOMF (OURS) 53.07 28.61 44.40 42.03

Table 17: Full Results on Dialogue Generation Task with LLaMA2-7B. Results of BOMF and base-
line methods with E2E dataset. B, M, and RL denote BLEU, METEOR, and Rouge-L, respectively.

METRIC B M RL AVG.

HPBO (RANK 64) 63.09 80.17 65.71 69.66
SWA 62.95 80.07 65.53 69.52
GREEDY SWA 63.86 80.00 66.63 70.16
LEARNED SWA 63.65 79.76 66.34 69.92
BOMF (OURS) 64.70 80.91 67.53 71.05

HPBO (RANK 4) 63.46 81.26 67.09 70.60
SWA 63.50 81.02 67.08 70.53
GREEDY SWA 63.27 81.17 67.68 70.71
LEARNED SWA 64.42 79.04 66.09 69.85
BOMF (OURS) 64.81 81.28 67.70 71.26

achieve such comprehensive enhancements. This proves the efficacy of our multi-objective method in
effectively considering multiple metrics with conflicting correlations.
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D Societal impact

BOMF does not directly have any positive or negative societal impacts since our algorithm is for
fine-tuning and model fusion. However, in the sense of developing LLMs, we can argue the societal
impacts of our work. On the positive side, our work can improve the productivity of human beings,
e.g., reduction of repeating tasks, and discover new scientific knowledge, e.g., artificial intelligence for
scientific discovery. On the other hand, as negative societal impacts, fine-tuning LLMs on downstream
tasks can still consume significant compute resources, which leads to climate change. Moreover, since
our fine-tuning process aims to optimize specific metrics, there can be a potential risk of optimizing
towards malicious metrics such as aggressiveness and violence. Therefore, we should be aware of
potential unethical outcomes and consider responsibility in selecting and optimizing these metrics.

E Safeguards

We use publicly available benchmarks and open-source models widely recognized in the LLM research
community. Additionally, we do not release proprietary or new datasets or models that could cause
the risk of misuse. Although our work potentially has a possibility to undertake inherent misuse that
is derived from public benchmarks and open-source models, we think that our method itself does not
pose a high risk of misuse.

28



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As outlined in § 1, our approach proposes a model fusion method that leverages
BO techniques. The empirical results in § 6 demonstrate that BOMF outperforms other
baseline methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of BOMF in § 7 and proposed future research to
provide theoretical reasoning for our findings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We don’t have any theoretical results in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided a detailed explanation of the algorithm for BOMF in § 4 and
discussed experimental details in Appendix A. Also, we provide detailed algorithms in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We offer comprehensive experimental settings, including details about the data,
in Appendix C, and our code is provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the need to fine-tune Large Language Models across various tasks,
conducting experiments multiple times would be excessively computationally expensive in
our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide our computational resources in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper aligns with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts regarding BOMF in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the safeguards regarding BOMF in Appendix E.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We address the code, data, models, and packages utilized in our experiments
in Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not include crowdsourcing or research involving human sub-
jects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not include crowdsourcing or research involving human sub-
jects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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