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Abstract

Pointwise loss is one of the most widely adopted yet practical choices for training
sequential recommendation models. Aside from their successes, only limited stud-
ies leverage normalized embeddings in their optimization, which has been actively
explored and proven effective in various machine learning fields. However, we
observe that the naïve adoption of normalization hinders the quality of a learned
recommendation policy. In particular, we argue that the clusterization of embed-
dings on a unit hypersphere triggers such performance degradation. To alleviate
this issue, we propose a novel training objective that enforces the uniformity of
embeddings while learning the recommendation policy. We empirically validate
our method on sequential recommendation tasks and show superior performance
improvements compared to other approaches without normalization.

1 Introduction

In sequential recommendation, learning robust feature representations of each user’s interaction
histories and items lies at the heart of most sequential recommendation systems. A recommendation
model generally learns a mapping function that projects users and items into latent vectors defined
on the shared embedding space of the same dimension, where a recommendation score is then
calculated via the inner product of latent vectors for a pair of history and item. In the realm of the
advances of neural networks [28, 5, 15], diverse approaches yield architectural improvements and
consequently enhance the quality of the learned recommendation policy [28, 26, 36, 35, 9, 31]. In
terms of core training objectives, however, comparably less studies have been suggested such that
either pointwise [1, 9] or pairwise loss [25, 24] is usually adopted. While such objectives differ
in their forms, both losses utilize unnormalized embeddings in common, thereby intensifying a
popularity bias among recommended items [2, 23, 14].

On the other hand, use of normalized representations is the de facto standard due to its improved
performance and robustness in a wide variety of applications in computer vision and natural language
processing [8, 3, 7, 22]. Despite their successes, we observe that the naïve adoption of such embedding
normalization leads to significant performance degradation. In this work, we first empirically analyze
the cause of the aforementioned training failure and subsequently introduce a novel method that
addresses such a limitation. Specifically, we argue that the clusterization of both item and history
embeddings during the training process deteriorates the resulting performance.

To tackle this issue on the clusterization of representations, we introduce a new training objective
that prevents the bias of normalized embeddings where the recommendation policy is simultaneously
learned. On top of the original pointwise recommendation loss, we introduce a novel regularization
term, which is motivated by the uniformity constraint [30], to relax the skewness of learned embed-
dings. The model consequently maintains maximal information required to recommend the most
relevant items depending on each user’s history within normalized representations. We validate the
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(b) Early training stage
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(c) Late training stage

Figure 1: Experiments on the clusterization issue with the naïve adoption of normalization during
training. Figure 1(a) illustrates performance difference between unnormalized and normalized embed-
dings. Figures 1(b) and 1(c) represent pairwise cosine similarities of history and item embeddings.

proposed loss on four different sequential recommendation benchmarks and demonstrate superior
performance improvements over different approaches with unnormalized embeddings.

2 Preliminaries

Problem Formulation. Let a set of M users be U = {u1, . . . , uM} and a set of N items be
I = {i1, . . . , iN}. A sequential recommendation task requires capturing a dynamic user behavior
from a previous interaction history. By utilizing the previous interaction history of a user u, denoted as
hu = {iu1 , . . . , iut }, where iuj is jth item for u and eventually iu1 , . . . , i

u
t are chronologically ordered,

a goal of sequential recommendation is to select the most relevant next item iut+1 ∈ I to u.

Embedding-based Recommendation. Learning a parametric function to embed original vectors
of users and items to their hidden representations has steadily proven its effectiveness in tackling a
recommendation problem [9]. Given a history hu and an item ik, a model, parameterized by θ, first
projects hu and ik onto the vectors of the same dimension h′

u and i′k, respectively. To process hu,
which can be considered as a sequence, a model that can handle sequences, e.g., Gated Recurrent
Unit (GRU) [4] and Transformer [28], is employed. Then, a recommendation score between h′

u and
i′k is calculated through an inner product of the two vectors, which is given by the following:

ŝuk = h′
u
⊤
i′k. (1)

Training Objective. Pointwise loss is one of the most iconic training objectives to learn adequate
embeddings of users and items [1, 34]. Among many variants available, we adopt a conventional
strategy of predicting the next item. The corresponding objective is employed to train a recommenda-
tion model with a dataset D consisting of (u, i, j) where an item i is observed (i.e., positive) and an
item j is unobserved (i.e., negative) to a user u. Then, the recommendation loss Lrec is defined as the
following form based on a binary cross-entropy:

Lrec(D;θ) = −
∑

(u,i,j)∈D

log σ(ŝui;θ) + log(1− σ(ŝuj ;θ)), (2)

where ŝui and ŝuj are the predicted scores of items i and j, respectively, and σ is a sigmoid function.

3 Clusterization of Embeddings

Motivated by the success of embedding normalization in other machine learning fields [29, 33, 6],
we analyze its effects on a general recommendation task. Given the two latent representations, h′

u
and i′k, we normalize each vector such that they reside on the surface of a unit hypersphere:

h̄′
u =

h′
u

∥h′
u∥2

and ī′k =
i′k

∥i′k∥2
. (3)

We thus remove magnitude information from each embedding and alternatively measure a score
between two vectors using the cosine similarity between two normalized vectors. To validate
its effectiveness, we report the resulting recommendation performance by comparing the use of
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unnormalized embeddings to the use of normalized embeddings where a neural architecture and loss
are fixed. The corresponding results are visualized in Figure 1. We find that the naïve adoption of
normalization to the training of the recommender system instead leads to a significant performance
drop of the recommendation quality; see Figure 1(a). We presume that the normalized representations
do not preserve substantial information for recommendation as magnitudes become identical. Inspired
by [17], we calculate a pairwise cosine similarity of normalized item and history embeddings
independently to validate our hypothesis. In Figure 1(b), we observe that the history embeddings
are typically clusterized at the early stage of the training. While the level of skewness decreases
as training proceeds, we still find the bias of embeddings, not covering a broad surface of the unit
hypersphere. Nevertheless, we see that performance slowly increases as embeddings become less
biased as illustrated in Figure 1(c), which is consistent with our hypothesis.

4 Proposed Method

To alleviate the issue aforementioned, we present a novel training objective for recommendation and
thoroughly describe rationales behind each component.

First and foremost, our embeddings should be distributed evenly as much as possible on the hy-
persphere thereby preserving sufficient information for recommendation. Following the uniformity
metric proposed in [30], we design a regularization term based on the Gaussian potential kernel over
embeddings but with a slight modification. Given a batch of triplets (u, i, j), we first split the batch
into two disjoint sets: DH consisting of only history embeddings whereas DI consisting of only item
embeddings. We then calculate a sum of pairwise Gaussian potentials for each set homogeneously:

Lhom =
∑

x,y∈DH

e−t∥h̄′
x−h̄′

y∥
2
2 +

∑
x,y∈DI

e−t∥ī′x−ī′y∥
2
2 , (4)

where h̄′ and ī′ are normalized history and item embeddings, respectively. By minimizing the Lhom,
we expect history embeddings less skewed, and the same for item embeddings as well. Additionally,
we define a heterogeneous term as a sum of pairwise Gaussian potentials between each history and
negative item embedding:

Lhet =
∑

x∈DH ,y∈DJ

e−t∥h̄′
x−ī′y∥

2
2 . (5)

where DJ is a subset of DI , containing only negative items from the batch. In particular, Lhet sets
each history embedding to be generally far from the embeddings of negative items. Combining
Equations (4) and (5) with the pointwise loss Lrec, a final form of our objective is defined as follows:

L = Lrec + β1Lhom + β2Lhet. (6)
For simplicity, we use particular t, β1, and β2; see the appendix for their details. We would like to
note that our proposed loss is versatile since the replacement of the recommendation loss (e.g., a
pairwise loss instead of a pointwise loss) or the embedding module (e.g., different neural networks)
can be readily achieved with minimal effort and no extra modification. Finally, the recommendation
score is calculated similarly as the inner product but now between normalized embeddings.

5 Experiments

In this section, we conduct comprehensive experiments to empirically validate the effectiveness of
our proposed loss over existing training losses.

5.1 Experimental Setup

Datasets and Evaluation Metrics. We use four publicly available sequential recommendation
benchmarks: Beauty, Toys, and Sports categories from the Amazon datasets [20], and the Yelp
dataset.1 Details of preprocessing procedure and resulting statistics for each dataset are illustrated in
the appendix. To evaluate the quality of a trained recommendation model, we adopt two common
top-K metrics: top-K Hit Ratio (HR@K) and top-K Normalized Discounted Cumulative Gain
(NDCG@K). With the trained model, we recommend K items with the highest recommendation
scores from the entire item pool. Note that K is set as 10.

1https://www.yelp.com/dataset
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Table 1: Overall performance of different methods. Ten items from the entire item pool are recom-
mended. For each model and benchmark, results in boldface are best performing methods.

Model Method Beauty Toys Sports Yelp
HR NDCG HR NDCG HR NDCG HR NDCG

GRU4Rec

BCE 0.0369 0.0185 0.0298 0.0164 0.0148 0.0076 0.0273 0.0136
BPR 0.0472 0.0248 0.0492 0.0276 0.0283 0.0153 0.0368 0.0190
InfoNCE 0.0365 0.0169 0.0282 0.0141 0.0314 0.0153 0.0482 0.0241
Our Loss 0.0702 0.0373 0.0705 0.0385 0.0365 0.0193 0.0665 0.0378

Caser

BCE 0.0348 0.0172 0.0250 0.0125 0.0218 0.0110 0.0251 0.0121
BPR 0.0332 0.0159 0.0298 0.0140 0.0165 0.0083 0.0644 0.0342
InfoNCE 0.0421 0.0172 0.0371 0.0149 0.0245 0.0107 0.0643 0.0333
Our Loss 0.0544 0.0258 0.0416 0.0174 0.0261 0.0116 0.0658 0.0357

SASRec

BCE 0.0522 0.0278 0.0604 0.0295 0.0301 0.0145 0.0507 0.0278
BPR 0.0594 0.0261 0.0662 0.0309 0.0337 0.0150 0.0552 0.0326
InfoNCE 0.0588 0.0261 0.0677 0.0305 0.0367 0.0165 0.0593 0.0334
Our Loss 0.0821 0.0371 0.0896 0.0411 0.0471 0.0214 0.0668 0.0405

Baselines. We verify the effectiveness of our proposed loss with three different architectures for
embedding backbones; GRU4Rec [11], Caser [27] and SASRec [13]. Within each architecture, we
only switch the training objective and measure the quality of the resulting recommendation policy for
valid comparisons of losses. Specifically, we adopt BPR loss [25], BCE loss, and InfoNCE loss [21]
as baseline methods, all trained without normalization.

5.2 Results and Analyses

Table 1 summarizes the overview of the performance of baselines and our proposed method, with
carefully tuned hyperparameters for all configurations in all datasets. We observe that our proposed
objective consistently outperforms all baseline methods regardless of the embedding architectures.
Such results imply that a model with normalized embeddings can exhibit improved quality in
recommendation when properly trained. Specifically, we presume that our method successfully
resolves the training failure of the naïve normalization approach.

It is noteworthy that the most effective baseline loss changes with respect to the utilized model
architecture. For instance, while the BPR loss shows the most impressive performance with SASRec
and GRU4Rec, the InfoNCE loss turns out to be the best for Caser than other baselines. Our
loss, on the other hand, surpasses the best performing baseline in all datasets generally by big
margin irrespective of the backbone used. Such model-agnostic tendency depicts the robustness and
effectiveness of normalized embeddings, especially when combined with our regularization term.

For model comparison, we observe SASRec to be a generally better pipeline than the rest in terms of
reported metrics in all datasets. In the Beauty dataset, for example, SASRec achieved almost 17%
performance improvement over GRU4Rec and 51% improvement over Caser when trained with our
proposed loss. Meanwhile, we discover that performance of our loss in the Yelp dataset tends to be
similar regardless of the architecture used. Hence, we argue that the effective choice of architecture
varies depending on the data discrepancy of the tested benchmark. Further ablation studies to validate
the effectiveness of each component of our method are presented in the appendix.

6 Conclusion

In this work, we focused on applying embedding normalization to the training process of recom-
mender systems. We analyzed the possible cause of performance drop with simple adoption of
embedding normalization. To tackle the issue, we proposed a novel uniformity-inspired objective that
enhances the quality of recommendation with normalization. Through a set of experiments on public
recommendation benchmarks, we empirically validated its effectiveness and robustness compared to
existing methods with unnormalized embeddings.
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A Dataset Preprocessing

Following the data preparation procedure in [20], we first regard each dataset consisting of implicit
feedback only while removing users and items that appear less than five times in total interactions.
Then for dataset partitioning, we adopt the conventional leave-one-out strategy [13, 26]: the last two
interacted items of each user are utilized for validation and test, while the remaining items are used to
train the model.

B Hyperparameters

For all tested datasets, we use a batch size as 256, a maximum sequence length as 50, and a dropout
rate as 0.5 regardless of the backbones and losses. For the other hyperparamters, we apply grid search
to select the best training configurations. Corresponding search spaces are {0.0001, 0.0002, 0.0003}
for the learning rate, {32, 64, 128} for the embedding dimension size, and {1, 2, 3} for the number
of layers and heads, respectively.

For simplicity, we set coefficients β1 and β2 of our proposed loss to a same value β that is chosen
from {0.05, 0.01, 0.005, 0.001}. In addition, we fixed the value of t of the Gaussian potential kernel
to 2 throughout all experiments. Finally, we utilize early stopping, so that a model is trained until
validation performance does not improve for more than 20 epochs.

C Ablation Studies

We design and conduct extensive ablation studies to thoroughly inspect each component of our loss
and the impact of tuning the corresponding hyperparameter.

Table 2: Ablation study of our proposed loss function. Blank space indicates the absence of
corresponding term. Metrics are computed only with the SASRec architecture.

Reference Normalization Lrec Lhom Lhet
Beauty Toys

HR NDCG HR NDCG

(a) ✓ 0.0522 0.0278 0.0604 0.0295
(b) ✓ ✓ 0.0233 0.0113 0.0181 0.0093
(c) ✓ ✓ ✓ 0.0786 0.0362 0.0865 0.0394
(d) ✓ ✓ ✓ 0.0416 0.0205 0.0399 0.0204
(e) ✓ ✓ ✓ ✓ 0.0821 0.0371 0.0896 0.0411
(f) ✓ ✓ ✓ 0.0028 0.0015 0.0023 0.0011
(g) ✓ ✓ ✓ 0.0534 0.0257 0.0614 0.0301

C.1 Loss Component Analysis

In Table 2, the detailed comparison of the resulting performance trained with different combinations
of our loss components is presented. Here, we fix the model architecture to SASRec and regularization
coefficient β to the value of 0.05. We observe performance of the original next item prediction loss,
denoted by (a), deteriorates significantly when simply adopting the normalization as (b). On the other
hand, we see a dramatic performance gain when trained with our proposed loss (e), hence verifying
the effectiveness of uniformity-inspired regularization.

While all components contribute to the increased performance, we notice Lhom most critical for such
gain by comparing the performance of (c) to (b). Such result indicate the importance of limiting
clusterization of embeddings while training when normalized. Nevertheless, we observe Lhet further
improves the quality of recommendations as seen in performance difference between (e) and (d).
Finally, we design and report performance of (f) and (g) to verify the importance of normalization
and original recommendation loss. We then observe significant performance drop compared to the
model trained with complete form of our loss ((e)). Such results indicate that each component of our
loss is necessary to achieve the enhancement.
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Table 3: Ablation study on the regularization coefficient β. All metrics are compute with only the
SASRec architecture. Other hyperparameters are fixed to a same configuration.

β
Beauty Toys

HR NDCG HR NDCG

0.1 0.0785 0.0358 0.0854 0.0389
0.05 0.0821 0.0371 0.0896 0.0411
0.01 0.0658 0.0314 0.0708 0.0331
0.005 0.0557 0.0268 0.0582 0.0280
0.001 0.0353 0.0168 0.0320 0.0158

C.2 Effects of Regularization Coefficients

To investigate the effect of the regularization parameters β1 and β2, we examine the resulting
performance by differentiating the value. For simplicity as again, we fix both coefficients to a same
value of β and adjust accordingly. Table 3 summarizes the result of our proposed loss on Beauty
and Toys dataset with different values of coefficient. We discover the value of 0.05 achieves the
highest metric while either value above it or below it degrades the performance. Thus, selection
of the coefficient to appropriate value is necessary to enjoy the stable and robust performance
with embedding normalization. Otherwise, resulting performance can even be worse than original
recommendation loss without the normalization.

D Related Work

In this section, we review several representative approaches for sequential recommendation tasks and
attempts at utilizing normalization in recommendation tasks.

D.1 Sequential Recommendation

Traditional work on sequential recommendation builds upon the idea of decomposing users and items
into latent vector representations [16, 12]. By utilizing deep neural networks [28] as an embedding
module, such methods have achieved enormous performance improvements. GRU4Rec [11] and
Caser [27] adopt recurrent neural network and convolution-based embedding modules, respectively.
SASRec [13] and BERT4Rec [26] are two representative frameworks that employ Transformer-based
architectures. Recently, MLP-based models such as [36] and GNN-based model [10] have been
introduced as well for further improvements.

D.2 Normalization in Recommendation

Despite its rarity, there have been continuous but few approaches combining embedding normalization
in recommendation tasks. [32] incorporates embedding normalization with the InfoNCE loss and
further examines the behavior of the trained recommender. [18] utilizes normalized embeddings in a
contrastive loss to overcome the problem of false negatives during sampling. [19] introduces a cosine
contrastive loss that operates on normalized embeddings to prevent the intervention of magnitude
information. [23] suggests gradient-based embedding adjustment approach that adopts normalization
to resolve the popularity bias problem. [2] adaptively adjusts the magnitude of embeddings to improve
recommendation performance. [14] proposes a test-time normalization approach to mitigating the
popularity bias issue of conventional recommender systems.
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