
1/48

Bayesian Optimization and Its Applications

Jungtaek Kim
jtkim@postech.ac.kr

POSTECH
Pohang 37673, Republic of Korea
https://jungtaek.github.io

January 31, 2022

jtkim@postech.ac.kr
https://jungtaek.github.io

2/48

Table of Contents

Bayesian Optimization
Motivation
Surrogate Models
Acquisition Functions
Acquisition Function Optimization
Overall Procedure of Bayesian Optimization
Relationship to Other Algorithms
BayesO

Applications of Bayesian Optimization
Automated Machine Learning
Sequential Assembly

Takeaway

3/48

Bayesian Optimization

4/48

Mathematical Optimization

x1

−4 −2
0

2
4

6
8

10

x 2

0
2

4
6

8
10

12
14

f
(x

)

50

100

150

200

250

300

50

100

150

200

250

Figure 1: Branin function.

I Given an objective f : A → R where
A is some set, it seeks minimum or
maximum of the target function:

x∗ = arg min f(x), (1)

or
x∗ = arg max f(x). (2)

5/48

Mathematical Optimization

I To optimize an objective, we can select one of such strategies:

I random searches;

I gradient-based approaches;

I convex programming;

I evolutionary algorithms;

I simulated annealing.

I Each strategy has the advantage in the corresponding conditions of optimization
problem.

I However, under certain circumstances, Bayesian optimization is the most effective
method to solve some class of mathematical optimization problems.

6/48

Global Optimization

°10.0 °7.5 °5.0 °2.5 0.0 2.5 5.0 7.5 10.0

x

°2

°1

0

1

f
(x

)

I Global optimization solves a problem to find a global minimizer x?:

x? = arg min
x∈X

f(x), (3)

where X ⊂ Rd is a compact search space.

7/48

Black-Box Optimization

Definition 1 (Black-box function)

If an objective f , defined in (3), satisfies the following statements, we call it as a
black-box function:

(i) a function f is unknown, but evaluations of f are available;

(ii) a gradient ∇f and Hessian matrix ∇2f are also unknown;

(iii) the condition that f is Lipschitz continuous is known;

(iv) moreover, differentiability and continuity of f are unknown,

on a compact search space X .

8/48

Black-Box Optimization

I According to recent work [Hansen et al., 2010, Turner et al., 2020], we can apply
some classes of possible candidates:

I random search [Bergstra and Bengio, 2012];

I evolutionary strategies [Hansen, 2006, 2016];

I Lipschitzian optimization method without the Lipschitz constant [Jones et al., 1993,
Jones and Martins, 2021];

I Bayesian optimization [Kushner, 1964, Močkus, 1975];

I sequential model-based optimization with tree-based surrogates [Hutter et al., 2011].

I Unfortunately, there is no rule of thumb for choosing the best approach to solving
a certain objective without directly conducting the method on the optimization
problem.

9/48

Bayesian Optimization

I Bayesian optimization is a promising method to find a global optimizer of
black-box objective function.

I Evaluation of the objective is only available.

I Since we do not know a target function, it optimizes an acquisition function,
instead of the target function.

I An acquisition function is defined with factors for exploiting available information
up to current iteration and exploring an unexplored region.

10/48

Surrogate Models

I A surrogate model estimates a true objective function, where historical evaluations
are given.

I To balance a trade-off between exploration and exploitation, it predicts a function
estimate and its uncertainty estimate over any query x ∈ X .

I Gaussian process regression [Rasmussen and Williams, 2006], Student-t process
regression [Martinez-Cantin et al., 2018], random forest regression [Hutter et al.,
2011], and Bayesian neural network [Springenberg et al., 2016] have been used.

11/48

Surrogate Models

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

−2

−1

0

1

2

y

(a) Gaussian process

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

−2

−1

0

1

2

y

(b) Student-t process

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

−2

−1

0

1

2

y

(c) Random forest

Figure 2: Examples of surrogate models.

12/48

Gaussian Process

I A collection of random variables, any finite number of which have a joint Gaussian
distribution [Rasmussen and Williams, 2006].

I Generally, a Gaussian process is defined as

f ∼ GP(m(x), k(x,x′)), (4)

where

m(x) = E[f(x)], (5)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (6)

13/48

Gaussian Process Regression

−3 −2 −1 0 1 2 3

x

−1

0

1

2

y

(a) From prior function dist.

−3 −2 −1 0 1 2 3

x

−1

0

1

2

3

y
(b) From posterior function dist.

−3 −2 −1 0 1 2 3

x

−2

−1

0

1

2

3

4

y

(c) Predictive dist.

Figure 3: Gaussian process regression for a function cos(x) + 2 with an observation noise.

14/48

Gaussian Process Regression

I One of popular covariance functions, the exponentiated quadratic covariance
function in one dimension is defined as

k
(
x, x′

)
= s2 exp

(
− 1

2l2
(
x− x′

)2)
+ σ2nδxx′ , (7)

where s is a signal scale, l is a length scale and σ2n is a noise variance [Rasmussen
and Williams, 2006].

I Posterior mean function µ(x∗;X,y) and variance function σ2(x∗;X,y):

µ(x∗;X,y) = k(x∗,X)(K(X,X) + σ2nI)−1y, (8)

σ2(x∗;X,y) = k(x∗,x∗)− k(x∗,X)(K(X,X) + σ2nI)−1k(X,x∗), (9)

where X ∈ Rn×d and y ∈ Rn.

15/48

Gaussian Process Regression

I If non-zero mean prior is given, posterior mean and variance functions:

µ(x∗;X,y) = k(x∗,X)(K(X,X) + σ2nI)−1(y − µp(X)) + µp(x
∗), (10)

σ2(x∗;X,y) = k(x∗,x∗)− k(x∗,X)(K(X,X) + σ2nI)−1k(X,x∗), (11)

where µp is a prior mean function, and µp(X) = [µp(x1), . . . , µp(xn)].

16/48

Student-t Process Regression

I If non-zero mean prior is given, posterior mean and variance functions:

µ(x∗;X,y) = k(x∗,X)K̃−1ỹ + µp(x
∗), (12)

σ2(x∗;X,y) =
ν + ỹ>K̃−1ỹ − 2

ν + n− 2

(
k(x∗,x∗)− k(x∗,X)K̃−1k(X,x∗)

)
, (13)

where µp is a prior mean function, µp(X) = [µp(x1), . . . , µp(xn)],

ỹ = y − µp(X), and K̃ = K(X,X) + σ2nI.

I The parameter ν for the posterior distribution is set to ν + n.

17/48

Random Forest Regression
I Posterior mean and variance functions:

µ
(
x∗; {Tb}Bb=1,X,y

)
=

1

B

B∑
b=1

µb(x
∗)

=
1

B

B∑
b=1

∑
τ∈τ b,l

µτ1x∗∈τ , (14)

σ2
(
x∗; {Tb}Bb=1,X,y

)
=

1

B

B∑
b=1

(
σ2b (x

∗) + µ2b(x
∗)
)
− µ

(
x∗; {Tb}Bb=1,X,y

)2
=

1

B

B∑
b=1

((∑
τ∈τ b,l

στ1x∗∈τ

)2
+
(∑
τ∈τ b,l

µτ1x∗∈τ

)2)

−
(

1

B

B∑
b=1

µb(x
∗)

)2

. (15)

18/48

Acquisition Functions

I An acquisition function acquires the next sample to evaluate by a black-box
function f .

I As a popular choice of acquisition functions, the following acquisition functions:

I probability of improvement (PI) [Kushner, 1964];

I expected improvement (EI) [Močkus et al., 1978];

I Gaussian process upper confidence bound (GP-UCB) [Srinivas et al., 2010],

have been suggested.

19/48

Acquisition Functions

I Diverse acquisition functions:

I knowledge gradient [Frazier et al., 2009];

I entropy search [Hennig and Schuler, 2012];

I predictive entropy search [Hernández-Lobato et al., 2014];

I clustering-guided Gaussian process upper confidence bound (CG-GPUCB) [Kim and
Choi, 2018b];

I portfolio allocation of various acquisition functions [Hoffman et al., 2011];

I alternatives of expected improvement by tree-structured Parzen estimator [Bergstra
et al., 2011] and class-probability estimation [Tiao et al., 2021],

have been also proposed.

[Kim and Choi, 2018] J. Kim and S. Choi. Clustering-guided GP-UCB for Bayesian optimization. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 2461–2465, Calgary, Alberta, Canada, 2018b.

20/48

Popular Acquisition Functions (Minimization Case)

I Suppose that

(x†, y†) = arg min
(x,y)∈Dt−1

y, (16)

µ(x;X,y) = µ(x;Dt−1), (17)

σ(x;X,y) = σ(x;Dt−1). (18)

I PI criterion [Kushner, 1964] is defined as

aPI(x | Dt−1) =

{
Φ
(
y†−µ(x;Dt−1)
σ(x;Dt−1)

)
if σ2(x;Dt−1) > 0,

0 otherwise,
(19)

where Φ is a cumulative distribution function of the standard normal distribution.

21/48

Popular Acquisition Functions (Minimization Case)

I EI criterion [Močkus et al., 1978] is defined as

aEI(x | Dt−1) =

{
σ(x;Dt−1) (z(x)Φ (z(x)) + φ (z(x))) if σ2(x;Dt−1) > 0,

0 otherwise,

(20)

where z(x) = y†−µ(x;Dt−1)
σ(x;Dt−1)

, Φ is a cumulative distribution function of the standard
normal distribution, and φ is a probability density function of the standard normal
distribution.

I GP-UCB criterion [Srinivas et al., 2010] is defined as

aUCB(x | Dt−1) = −µ(x;Dt−1) + βtσ(x;Dt−1), (21)

where βt is a trade-off hyperparameter at iteration t.

22/48

Acquisition Function Optimization

I We should find a global optimizer of acquisition function.

I But, in practice, either local optimizer or multi-started local optimizer can be a
good option as a substitute of global optimizer.

I Analyses on these selections are provided in [Kim and Choi, 2020].

[Kim and Choi, 2020] J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 675–690, Virtual, 2020.

23/48

On Local Optimizers of Acquisition Functions in Bayesian
Optimization

Theorem 2 (Instantaneous regret difference between global and local optimizers)

Given δl ∈ [0, 1) and εl, ε1, ε2 > 0, the regret difference for a local optimizer xt,l at
iteration t, |rt,g − rt,l| is less than εl with a probability at least 1− δl:

P
(
|rt,g − rt,l| < εl

)
≥ 1− δl, (22)

where δl = γ
ε1

(1− βg) + M
ε2

, εl = ε1ε2, γ = maxxi,xj∈X ‖xi − xj‖2 is the size of X , βg
is the probability that a local optimizer of the acquisition function collapses with its
global optimizer, and M is the Lipschitz constant.

24/48

On Local Optimizers of Acquisition Functions in Bayesian
Optimization

Theorem 3 (Instantaneous regret difference between global and multi-started
local optimizers)

Given δm ∈ [0, 1) and εm, ε2, ε3 > 0, a regret difference for a multi-started local
optimizer xt,m, determined by starting from N initial points at iteration t, is less than
εm with a probability at least 1− δm:

P
(
|rt,g − rt,m| < εm

)
≥ 1− δm, (23)

where δm = γ
ε3

(1− βg)N + M
ε2

, εm = ε2ε3, γ = maxxi,xj∈X ‖xi − xj‖2 is the size of
X , βg is the probability that a local optimizer of the acquisition function collapses with
its global optimizer, and M is the Lipschitz constant.

I By following our intuition, this bound is tighter than the bound provided
in Theorem 2.

25/48

On Local Optimizers of Acquisition Functions in Bayesian
Optimization

10 20 30 40
Iteration

0

5000

10000

15000

20000

25000
In

st
an

ta
n

eo
u

s
R

eg
re

t
D

iff
er

en
ce

L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(a) Beale

10 20 30 40
Iteration

0

20

40

60

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

(b) Branin

10 20 30 40 50 60
Iteration

0

1

2

3

4

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(c) Cosines (8 dim.)

10 20 30 40 50 60
Iteration

0.00

0.25

0.50

0.75

1.00

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(d) Hartmann6D

10 20 30 40 50 60
Iteration

0.0

2.5

5.0

7.5

10.0

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(e) Holdertable

10 20 30 40 50 60
Iteration

0

500

1000

1500

2000

2500

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce
L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(f) Rosenbrock

10 20 30 40 50 60
Iteration

0

5

10

15

20

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

(g) Six-Hump Camel

10 20 30 40 50 60
Iteration

0

10

20

30

40

In
st

an
ta

n
eo

u
s

R
eg

re
t

D
iff

er
en

ce

L-BFGS-B (1)

L-BFGS-B (10)

L-BFGS-B (100)

L-BFGS-B (1000)

(h) Sphere

Figure 4: Empirical results on Theorems 2 and 3.

26/48

On Local Optimizers of Acquisition Functions in Bayesian
Optimization

Table 1: Time (sec.) consumed in optimizing acquisition functions.

Beale Branin
Cosines Hart- Holder- Rosen- Six-Hump

Sphere
(8 dim.) mann6D table brock Camel

DIRECT 3.434 2.987 2.508 0.728 2.935 13.928 4.639 10.707
L-BFGS-B (1) 0.010 0.004 0.023 0.026 0.017 0.005 0.010 0.030
L-BFGS-B (10) 0.096 0.036 0.224 0.253 0.177 0.050 0.100 0.311
L-BFGS-B (100) 0.977 0.363 2.224 2.533 1.760 0.504 0.969 3.048
L-BFGS-B (1000) 9.720 3.633 22.306 25.305 17.629 5.049 9.682 30.764

I Multi-started local optimizer provides a more efficient approach than global
optimizer, in terms of computational complexities.

27/48

Overall Procedure of Bayesian Optimization

Algorithm 1 Overall Procedure of Bayesian Optimization

Input: A domain of interest X ⊂ Rd, an initial set of data D0, an evaluation budget T ,
and a true unknown objective f .

Output: The best optimizer found until T , xbest.
1: for t = 1, . . . , T do
2: Construct a surrogate model f̂(x;Dt−1).
3: Choose the next point to evaluate by maximizing an acquisition function, defined

with f̂ : xt = arg maxx∈X a(x | Dt−1).
4: Evaluate xt by f : yt = f(xt) + εt, where εt is observation noise.
5: Append (xt, yt) to Dt = Dt−1 ∪ {(xt, yt)}.
6: end for
7: Determine the best optimizer found until T : xbest = arg min(x,y)∈DT

y.
8: return xbest

28/48

Bayesian Optimization Results with PI

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

5

a
(x

)

(a) Iteration 1

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

2.5

a
(x

)

(b) Iteration 2

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

10

a
(x

)

(c) Iteration 3

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

5

a
(x

)

(d) Iteration 4

−2.5

0.0

2.5

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

5

a
(x

)

(e) Iteration 5

−2.5

0.0

2.5

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

10

a
(x

)

(f) Iteration 6

−2.5

0.0

2.5

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

5

a
(x

)

(g) Iteration 7

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

2.5

a
(x

)

(h) Iteration 8

−5

0

5

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

2.5

a
(x

)

(i) Iteration 9

Figure 5: Bayesian optimization results with PI criterion.

29/48

Bayesian Optimization Results with EI

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

1

a
(x

)

(a) Iteration 1

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

2

a
(x

)

(b) Iteration 2

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.5

a
(x

)

(c) Iteration 3

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.00

0.25

a
(x

)

(d) Iteration 4

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.5

a
(x

)

(e) Iteration 5

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.1

a
(x

)

(f) Iteration 6

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.00

0.25

a
(x

)

(g) Iteration 7

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.1

a
(x

)

(h) Iteration 8

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.5

a
(x

)

(i) Iteration 9

Figure 6: Bayesian optimization results with EI criterion.

30/48

Bayesian Optimization Results with GP-UCB

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

20

a
(x

)

(a) Iteration 1

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(b) Iteration 2

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(c) Iteration 3

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(d) Iteration 4

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(e) Iteration 5

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(f) Iteration 6

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(g) Iteration 7

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(h) Iteration 8

−2

0

2

y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0

25

a
(x

)

(i) Iteration 9

Figure 7: Bayesian optimization results with GP-UCB criterion.

31/48

Relationship to Multi-Armed Bandit Problem

I Each machine returns a reward r̂a ∼ pθa(ra) where a ∈ {1, . . . ,K}.

I It minimizes a cumulative regret Tµ∗ −∑T
t=1 r̂at where µ∗ = maxa∈{1,...,K} µa.

I Bayesian optimization can be considered as infinite bandits with dependent arms.

32/48

Relationship to Thompson Sampling

I Thompson sampling is usually applied in multi-armed bandit problems.

I For the case of a beta-Bernoulli bandit, Thompson sampling is defined as follows.

Algorithm 2 Thompson Sampling for a Beta-Bernoulli Bandit

1: for t = 1, 2, . . . , T do
2: for k = 1, . . . ,K do
3: Sample θ̂k ∼ beta(αk, βk).
4: end for
5: xt ← arg maxk θ̂k.
6: Apply xt and observe rt.
7: (αxt , βxt)← (αxt + rt, βxt + 1− rt).
8: end for

I After sampling the possibilities, it chooses a maximizer of those sampled values.

33/48

BayesO [Kim and Choi, 2017]

I Current version: 0.5.2

I Supported Python version: 3.6, 3.7, 3.8, 3.9

I Web page: https://bayeso.org

I GitHub repository: https://github.com/jungtaekkim/bayeso

I Documentation: https://bayeso.readthedocs.io

I License: MIT license

[Kim and Choi, 2017] J. Kim and S. Choi. BayesO: A Bayesian optimization framework in Python. https://bayeso.org, 2017.

https://bayeso.org
https://github.com/jungtaekkim/bayeso
https://bayeso.readthedocs.io
https://bayeso.org

34/48

Applications of Bayesian Optimization

35/48

Automated Machine Learning

I Automated machine learning is a framework to automatically find an optimal
machine learning model without human intervention [Guyon et al., 2015, Hutter
et al., 2019].

I Using training and validation datasets, Dtrain and Dvalid, the automated machine
learning system finds the optimal algorithm A∗ and the optimal hyperparameters
λ∗:

A∗,λ∗ = AutoML(Dtrain,Dvalid,A,Λ), (24)

where A is a search space for algorithm selection and Λ is a search space for
hyperparameter optimization.

36/48

Automated Machine Learning

37/48

Automated Machine Learning

Figure 8: Our automated machine learning system for AutoML Challenge 2018.

I Approaches that take the 3rd place in AutoML5 phase of AutoML Challenge [Kim
et al., 2016] and the 2nd place in AutoML Challenge 2018 [Kim and Choi, 2018a]
have been presented.

[Kim et al., 2016] J. Kim, J. Jeong, and S. Choi. AutoML Challenge: AutoML framework using random space partitioning optimizer. ICML Workshop
on Automatic Machine Learning (AutoML), New York, New York, USA, 2016.

[Kim and Choi, 2018a] J. Kim and S. Choi. Automated machine learning for soft voting in an ensemble of tree-based classifiers. ICML Workshop on
Automatic Machine Learning (AutoML), Stockholm, Sweden, 2018a.

38/48

Learning to Transfer Initializations for Bayesian Hyperparameter
Optimization [Kim et al., 2017]

I It can measure the similarities between unseen dataset and historical datasets by
learning to warm-start Bayesian hyperparameter optimization.

[Kim et al., 2017] J. Kim, S. Kim, and S. Choi. Learning to transfer initializations for Bayesian hyperparameter optimization. NeurIPS Workshop on
Bayesian Optimization (BayesOpt), Long Beach, California, USA, 2017.

39/48

Combinatorial 3D Shape Generation via Sequential Assembly

I 3D shape generation via sequential assembly mimics a human assembly process,
by allocating a budget of primitives given [Kim et al., 2020].

I We solve a sequential problem with Bayesian optimization-based framework of
combinatorial 3D shape generation, composed of a set of geometric primitives.

I To determine the position of the next primitive, two evaluation functions
regarding occupiability and stability are defined.

I Occupiability encourages us to follow a target shape and stability helps to create a
physically-stable combination.

I A new combinatorial 3D shape dataset that consists of 14 classes and 406
instances is also introduced in this work.

[Kim et al., 2020] J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. NeurIPS Workshop on
Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

40/48

Experimental Results

Step 1 Step 20 Step 40

Step 60 Step 80 Step 118

Figure 9: Generated assembling sequence that creates a car shape with 118 unit primitives.

41/48

Experimental Results

I We apply our framework in optimizing specific explicit functions.

0 5 10 15 20 25 30
#Primitives

0

5

10

15

20

25

30

H
ei

gh
t

Oracle

Random

Random w/ Eval.

BO

(a) Height

0 5 10 15 20 25 30
#Primitives

0

20

40

60

80

100

W
id

th

Oracle

Random

Random w/ Eval.

BO

(b) Width

0 5 10 15 20 25 30
#Primitives

0

20

40

60

80

100

D
ep

th

Oracle

Random

Random w/ Eval.

BO

(c) Depth

0 5 10 15 20 25 30
#Primitives

0

50

100

150

200

250

#
C

on
n

ec
te

d
st

u
d

s

Oracle

Random

Random w/ Eval.

BO

(d) #Conn. studs

Figure 10: Quantitative results on maximizing explicit evaluation functions.

42/48

Combinatorial 3D Shape Dataset

Parallel Perpendicular Bar Line Plate Wall

Cuboid Pyramid Bench Sofa Cup Hollow

Table Car

Figure 11: Selected examples from our dataset.

43/48

Related Work on Combinatorial and Sequential Assembly

I By following the problem formulation of combinatorial 3D construction and
sequential assembly, Thompson et al. [2020] suggest a deep generative model for
graphs to construct a 3D object with LEGO bricks.

I Unlike [Kim et al., 2020, Thompson et al., 2020], Lee et al. [2020] solve a 2D
jigsaw puzzle with randomly-partitioned fragments via an approach to assembling
the fragments sequentially.

I Chung et al. [2021] propose a deep reinforcement learning-based method to
assemble 2× 4 LEGO bricks, where the incomplete information of a target object,
i.e., 2D images, is given to construct the target object.

[Kim et al., 2020] J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. NeurIPS Workshop on
Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

[Lee et al., 2020] J. Lee*, J. Kim*, H. Chung, J. Park, and M. Cho. Fragment relation networks for geometric shape assembly. NeurIPS Workshop on
Learning Meets Combinatorial Algorithms (LMCA), Virtual, 2020.

[Chung et al., 2021] H. Chung*, J. Kim*, B. Knyazev, J. Lee, G. W. Taylor, J. Park, and M. Cho. Brick-by-Brick: Combinatorial construction with
deep reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, Virtual, 2021.

44/48

Takeaway

I Bayesian optimization is a powerful method to optimize a black-box function.

I Instead of methods based on heuristic or prior knowledge, it provides a structured
approach to finding an optimal solution.

I Bayesian optimization is expanding into various real-world applications.

45/48

Thank you!

46/48

References I
J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13:281–305, 2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing
Systems (NeurIPS), volume 24, pages 2546–2554, Granada, Spain, 2011.

H. Chung, J. Kim, B. Knyazev, J. Lee, G. W. Taylor, J. Park, and M. Cho. Brick-by-Brick: Combinatorial construction with deep reinforcement
learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, Virtual, 2021.

P. I. Frazier, W. B. Powell, and S. Dayanik. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing, 21(4):
599–613, 2009.

I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macià, B. Ray, M. Saeed, A. Statnikov, and E. Viegas. Design of the
2015 ChaLearn AutoML Challenge. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), pages 1–8, Killarney,
Ireland, 2015.

N. Hansen. The CMA evolution strategy: a comparing review. Towards a new evolutionary computation, pages 75–102, 2006.

N. Hansen. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009.
In Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), pages 1689–1696, Portland, Oregon, USA, 2010.

P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. Journal of Machine Learning Research, 13:1809–1837, 2012.

J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for efficient global optimization of black-box functions. In
Advances in Neural Information Processing Systems (NeurIPS), volume 27, pages 918–926, Montreal, Quebec, Canada, 2014.

M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In Proceedings of the Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pages 327–336, Barcelona, Spain, 2011.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proceedings of the
International Conference on Learning and Intelligent Optimization (LION), pages 507–523, Rome, Italy, 2011.

F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods, systems, challenges. Springer Nature, 2019.

D. R. Jones and J. R. R. A. Martins. The DIRECT algorithm: 25 years later. Journal of Global Optimization, 79(3):521–566, 2021.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157–181, 1993.

47/48

References II

J. Kim and S. Choi. BayesO: A Bayesian optimization framework in Python. https://bayeso.org, 2017.

J. Kim and S. Choi. Automated machine learning for soft voting in an ensemble of tree-based classifiers. In International Conference on Machine
Learning Workshop on Automatic Machine Learning (AutoML), Stockholm, Sweden, 2018a.

J. Kim and S. Choi. Clustering-guided GP-UCB for Bayesian optimization. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 2461–2465, Calgary, Alberta, Canada, 2018b.

J. Kim and S. Choi. On local optimizers of acquisition functions in Bayesian optimization. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 675–690, Virtual, 2020.

J. Kim, J. Jeong, and S. Choi. AutoML Challenge: AutoML framework using random space partitioning optimizer. In International Conference on
Machine Learning Workshop on Automatic Machine Learning (AutoML), New York, New York, USA, 2016.

J. Kim, S. Kim, and S. Choi. Learning to transfer initializations for Bayesian hyperparameter optimization. In Neural Information Processing Systems
Workshop on Bayesian Optimization (BayesOpt), Long Beach, California, USA, 2017.

J. Kim, H. Chung, J. Lee, M. Cho, and J. Park. Combinatorial 3D shape generation via sequential assembly. In Neural Information Processing
Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Basic Engineering,
86(1):97–106, 1964.

J. Lee, J. Kim, H. Chung, J. Park, and M. Cho. Fragment relation networks for geometric shape assembly. In Neural Information Processing Systems
Workshop on Learning Meets Combinatorial Algorithms (LMCA), Virtual, 2020.

R. Martinez-Cantin, K. Tee, and M. McCourt. Practical Bayesian optimization in the presence of outliers. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 1722–1731, Lanzarote, Canary Islands, Spain, 2018.

J. Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference, pages 400–404, Novosibirsk,
Russia, 1975.

J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2:117–129,
1978.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

https://bayeso.org

48/48

References III

J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 29, pages 4134–4142, Barcelona, Spain, 2016.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In
Proceedings of the International Conference on Machine Learning (ICML), pages 1015–1022, Haifa, Israel, 2010.

R. Thompson, G. Elahe, T. DeVries, and G. W. Taylor. Building LEGO using deep generative models of graphs. In Neural Information Processing
Systems Workshop on Machine Learning for Engineering Modeling, Simulation, and Design (ML4Eng), Virtual, 2020.

L. C. Tiao, A. Klein, M. Seeger, E. V. Bonilla, C. Archambeau, and F. Ramos. BORE: Bayesian optimization by density-ratio estimation. In
Proceedings of the International Conference on Machine Learning (ICML), pages 10289–10300, Virtual, 2021.

R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian optimization is superior to random search for machine
learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020. In Proceedings of the NeurIPS 2020 Competition and
Demonstration Track, pages 3–26, Virtual, 2020.

	Bayesian Optimization
	Motivation
	Surrogate Models
	Acquisition Functions
	Acquisition Function Optimization
	Overall Procedure of Bayesian Optimization
	Relationship to Other Algorithms
	BayesO

	Applications of Bayesian Optimization
	Automated Machine Learning
	Sequential Assembly

	Takeaway
	References

